[Math] Invertibility of a block matrix

block matricesinverselinear algebra

I need to prove that the following matrix is invertible
$$\left( {\begin{array}{*{20}{c}}
{{B_{n \times n}}}&{{I_{n \times m}}}\\
{{I_{m \times n}}}&{{0_{m \times m}}}
\end{array}} \right),$$

where $B_{n \times n}$ is an invertible $n\times n$-matrix, $I_{n \times m}$, $I_{m \times n}$ are identity matrices and $m < n$, for example
$${I_{3 \times 2}} = \left( {\begin{array}{*{20}{c}}
1&0\\
0&1\\
0&0
\end{array}} \right),\qquad{I_{2 \times 3}} = \left( {\begin{array}{*{20}{c}}
1&0&0\\
0&1&0
\end{array}} \right).$$

I will be grateful if someone help me to prove it.

Best Answer

The claim is false; take $m=1$, $n=2$ and $B=\tbinom{0\ 1}{1\ 0}$ to get the matrix $$\begin{pmatrix} 0&1&1\\ 1&0&0\\ 1&0&0 \end{pmatrix},$$ which is clearly not invertible. In the same way, for any value of $m$ and $n$ with $m<n$, the matrix $B$ with $1$'s on the antidiagonal and $0$'s elsewhere yields a singular matrix.

On the other hand, if $m=n$ then it is easily verified that $$ \begin{pmatrix} B&I_n\\I_n&O \end{pmatrix} \begin{pmatrix} O&I_n\\I_n&-B \end{pmatrix} =I_{2n},$$ and so the matrix is indeed invertible. Here $I_k$ denotes the $k\times k$ identity matrix.