[Math] Inverse of Strictly Monotone Function

inverse function

Let $f:\mathbb{R}\to\mathrm{S}$, where $\mathrm{S}\subseteq\mathbb{R}$, be a strictly increasing (decreasing) function. I wish to find out whether its inverse $f^{-1}$ is also strictly increasing (decreasing) or not. While a proof for this exists online, I will provide a counterexample that seems to contradict the conclusions in the proof.

The proof can be found in: https://proofwiki.org/wiki/Inverse_of_Strictly_Monotone_Function

I will for simplicity only consider a strictly increasing function. From the provided link above we have that:
\begin{align*}
x < y & \quad\Leftrightarrow\quad f(x) < f(y) \\
f^{-1}(x) < f^{-1}(y) & \quad\Leftrightarrow\quad f^{-1}(f(x)) < f^{-1}(f(y)) \\
f^{-1}(x) < f^{-1}(y) & \quad\Leftrightarrow\quad x < y \\
\end{align*}
Thus, if $f$ is a strictly increasing function, then so is $f^{-1}$.

Now for the counterexample. With some loss of generality, let $f:\mathbb{R}\to\mathbb{R}_{++}$ be a strictly positive function, where $\mathbb{R}_{++}=\{ x\in\mathbb{R}: x>0\}$. Furthermore, for an inverse it follows that $f^{-1}(x)f(x)=f(x)f^{-1}(x)=1$. Then from
\begin{align*}
x < y & \quad\Leftrightarrow\quad f(x) < f(y)
\end{align*}
we can rewrite the right-hand side as
\begin{align*}
f^{-1}(y)=\frac{1}{f(y)}<\frac{1}{f(x)}=f^{-1}(x)
\end{align*}
which implies that if $f$ is a strictly increasing function, then its inverse $f^{-1}$ is strictly decreasing.

Please provide comments if and why my counterexample is invalid. Thank you in advance.

Best Answer

We may argue as follows:

Let $f:X \mapsto Y$ be a monotone increasing function ( hence injective ), and let $ y_1, y_2 \in Y$, such that $y_1 < y_2$. Then, $\exists \ x_1, x_2 \in X \ $ s.t. $x_1=f^{-1}(y_1), x_2=f^{-1}(y_2)$. Thus, we have $f(x_1)=y_1, f(x_2)=y_2$.

Now, we claim that $f^{-1}(y_1) < f^{-1}(y_2)$. Otherwise, $f^{-1}(y_1) \geq f^{-1}(y_2) \Rightarrow x_1 \geq x_2 \Rightarrow f(x_1) \geq f(x_2) \Rightarrow y_1 \geq y_2 $, which is obviously a contradiction, so this concludes our proof.

Related Question