[Math] Inverse Laplace transform of $e^{-\sqrt s}$

laplace transformordinary differential equationspartial differential equations

How could one possibly find the inverse Laplace transform of $e^{-\sqrt{s}}$ using a table of Laplace transforms?

Best Answer

$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\int_{0^{+} - \infty\ic}^{0^{+} + \infty\ic}\expo{-\root{s}}\expo{ts} \,{\dd s \over 2\pi\ic} = -\int_{-\infty}^{0}\expo{-\root{-s}\exp\pars{\pi\ic/2}}\expo{ts} \,{\dd s \over 2\pi\ic} - \int_{0}^{-\infty}\expo{-\root{-s}\exp\pars{-\pi\ic/2}}\expo{ts} \,{\dd s \over 2\pi\ic} \\[5mm] = &\ -\int_{0}^{\infty}\expo{-\root{s}\ic}\expo{-ts} \,{\dd s \over 2\pi\ic} + \int_{0}^{\infty}\expo{\root{s}\ic}\expo{-ts} \,{\dd s \over 2\pi\ic} = {1 \over \pi}\int_{0}^{\infty}\sin\pars{\root{s}}\exp\pars{-ts}\,\dd s \\[5mm] = &\ {2 \over \pi}\int_{0}^{\infty}\sin\pars{s}\exp\pars{-ts^{2}}s\,\dd s = \bbx{\ds{{1 \over 2\root{\pi}}\,{\exp\pars{-1/\bracks{4t}} \over t^{3/2}}}} \end{align}

The last integral is evaluated as follows:

\begin{align} &{2 \over \pi}\int_{0}^{\infty}\sin\pars{s}\exp\pars{-ts^{2}}s\,\dd s = \left.-\,{2 \over \pi}\,\partiald{}{\mu}\int_{0}^{\infty} \cos\pars{\mu s}\exp\pars{-ts^{2}}\,\dd s\,\right\vert_{\ \mu\ =\ 1} \\[5mm] = &\ \left.-\,{1 \over \pi}\,\partiald{}{\mu}\Re\int_{-\infty}^{\infty} \exp\pars{-ts^{2} + \mu s\ic}\,\dd s\,\right\vert_{\ \mu\ =\ 1} = -\,{1 \over \pi}\,\partiald{}{\mu} \bracks{\root{\pi \over t}\exp\pars{-\,{\mu^{2} \over 4t}}}_{\ \mu\ =\ 1} \end{align}