[Math] Inverse Laplace of an exponential function $\exp{\{-x\sqrt{(s+h)/k}\}}$

laplace transform

I am having difficulty to figure out to use a Laplace Transform Table formula to verify a particular case.

The inverse Laplace transform of $$L^{-1}\bigg[\exp{\bigg\{-x\sqrt{(s+h)/k}\bigg\}}\bigg]$$ happens to be $$\frac{x\exp{[-ht-(x^2/4kt)]}}{2\sqrt{\pi kt^3}}$$
The conversion we need for such case from a Laplace transform table is $$\frac{a}{2\sqrt{\pi t^3}}\exp{(-a^2/4t)}=L^{-1}\bigg[\exp{(-a\sqrt{s})}\bigg]$$

Now, the question is how can I utilize the above formula?

Best Answer

Observe that if $\mathcal L\{f(t)\}=F(s)$, we have $\mathcal L\left\{\mathrm e^{-ht}f(t)\right\}=F(s+h)$ and $\mathcal L\{f(kt)\}=\frac{1}{k}F\left(\frac{s}{k}\right)$ for $k>0$ and then $$\mathcal L\left\{e^{-ht}f(kt)\right\}=\frac{1}{k}F\left(\frac{s+h}{k}\right)$$ so for $f(t)=\frac{a}{2\sqrt{\pi t^3}}\exp{(-a^2/4t)}$ with Laplcae transform $F(s)=\exp{(-a\sqrt{s})}$ we have $$ \mathcal L\left\{e^{-ht}f(kt)\right\}=\frac{1}{k}\exp\left(-a\sqrt{\frac{s+h}{k}}\right) $$ and then for $a=x$ we have \begin{align} \mathcal L^{-1}\left\{\exp\left(-x\sqrt{\frac{s+h}{k}}\right)\right\}&=e^{-ht}kf(kt)\\ &=e^{-ht}k\frac{x}{2\sqrt{\pi (kt)^3}}\exp{\left(-\frac{x^2}{4(kt)}\right)}\\ &=\frac{x}{2\sqrt{\pi kt^3}}\exp{\left(-ht-\frac{x^2}{4kt}\right)} \end{align}

Related Question