[Math] Intuition behind definition of spinor

abstract-algebraclifford-algebrasmathematical physicsrepresentation-theoryspin-geometry

Some time ago I searched for the definition of spinors and found the wikipedia page on the subject. Although highly detailed the page tries to talk about many different constructions and IMHO doesn't give the intuition behind any of them.

As far as I know physicists prefer to define spinors based on transformation laws (as with vectors and tensors), but all due respect, I find these kind of definitions quite unpleasant. Vectors and tensors can be defined in much more intuitive ways and I believe the same happens with spinors.

In that case, how does one really define spinors without resorting to transformation properties and what is the underlying intuition behind the definition? How the definition relates to the idea of spin from Quantum Mechanics?

In Wikipedia's page we have two definitions. One based on spin groups and another based on Clifford Algebras. I couldn't understand the intuition behind neither of them, so I'd like really to get not just the definition but the intuition behind it.

Best Answer

This is a quite deep and complex topic, which certainly needs a several pages article for a decent intro into it.

Spinors (although informally, they were already in use by the end of the $19^{th}$ century) are attributed to Elie Cartan.

Intuitively (not formally), one can say that they "look" like a kind of generalization of the Euler angles: in the sense that they are used to parameterize and describe generalized rotations (in generalized spaces) in a way reminiscent to the use of the Euler angles in the parameterization of $3d$ rotations.

Cartan's initial idea involved the abstract desription of rotations of $3d$ complex vectors: We consider the complex vector space $\mathbb{C}^3$ "equipped" with the product: $$\mathbf{x}\cdot\mathbf{y}=x_1y_1+x_2y_2+x_3y_3$$ whith $\mathbf{x}=(x_1,x_2,x_3),\mathbf{y}=(y_1,y_2,y_3)\in\mathbb{C}^3$. Then we consider the set of "isotropic" (i.e.: orthogonal to themselves) vectors characterized by $$\mathbf{x}\cdot\mathbf{x}=0$$ The set of isotropic vectors of $\mathbb{C}^3$ can be shown to form a $2d$ "hypersurface" inside $\mathbb{C}^3$ and this hypersurface can be parameterized by two complex coordinates $u_0$, $u_1$: $$\begin{array}{c} u_0=\sqrt{\frac{x_1-ix_2}{2}} \\ u_1= i\sqrt{\frac{x_1+ix_2}{2}} \end{array} \ \ \ \ \textrm{or} \ \ \ \ \begin{array}{c} u_0=-\sqrt{\frac{x_1-ix_2}{2}} \\ u_1=- i\sqrt{\frac{x_1+ix_2}{2}} \end{array} $$ Cartan used the term spinor for the complex $2d$ vectors $\mathbf{u}=(u_0,u_1)$. From this, the original isotropic vector $\mathbf{x}=(x_1,x_2,x_3)$ can be easily recovered. He then proceeded to describing the rotations of $\mathbf{x}$ in terms of the rotations of $\mathbf{u}$.

For a more modern ... "skratch" on the ... "surface" of these ideas, the notes: http://ocw.mit.edu/resources/res-8-001-applied-geometric-algebra-spring-2009/lecture-notes-contents/Ch5.pdf might prove useful.

A classic -and according to my opinion, invaluable- source is the work of Claude Chevalley: "The algebraic theory of Spinors and Clifford algebras", Collected works, v.2, Springer, 1995. The classic point of view (spinors as generalized complex spaces upon which the Pauli matrices and more generally Clifford algebras act) is further analyzed. Some useful references (up to my opinion) can also be found at:

https://hal.archives-ouvertes.fr/hal-00502337/document

http://www.fuw.edu.pl/~amt/amt2.pdf

http://cds.cern.ch/record/340609/files/9712113.pdf

http://hitoshi.berkeley.edu/230A/clifford.pdf

Regarding the intuition thing about spinors. Maybe it would be useful at this point to recall that in Classical physics the description is based upon a "rigid" euclidean $3d$ background i.e. vector spaces and euclidean geometry, upon which calculus is performed and produces the quantitative prediction (which is to be tested against experiment). On the other hand, when quantum mechanics and "quantization" comes into play (in almost all elementary senses of the word quantization), the description of the states of a system is based on vectors living inside Hilbert spaces -often infinite dimensional- upon which algebras of "observables" act. The quantitative predictions are now probabilistic and consist of "spectrums" of eigenvalues of the observables.

When coming to the description of the problem of rotations, the classical physics recipe consists of using the euler angles as parameters i.e. as a kind of $3d$ coordinates leading thus to orthogonal and generalized orthogonal Lie groups. In the quantum picture, the "parameters" are now special vectors of quotient spaces of hilbert spaces, i.e. "spinors", upon which rotations, which are now for example, elements of Lie groups, Lie algebras, Pauli matrices, elements of Clifford algebras etc, act.

Related Question