Differential Geometry – Interior Product and Exterior Product

differential-formsdifferential-geometryexterior-algebra

I have seen around the internet that this should hold:

$$\iota_X(\alpha\wedge\beta)=\iota_X\alpha\wedge\beta+(-1)^k\alpha\wedge\iota_X\beta,$$

where $X$ is a vector field, $\alpha$ a $k$-form, $\beta$ an $\ell$-form, $\iota_X$ is the interior product (i.e. $\iota_X\alpha(v_1,\dotsc,v_{k-1})=\alpha(X,v_1,\dotsc,v_{k-1})$), and $\wedge$ is the exterior product. Now I define the exterior product as:

$$\alpha\wedge\beta(v_1,\dotsc,v_k,v_{k+1},\dotsc,v_{k+\ell})=\sum_{\sigma\in S_{k+\ell}}\operatorname{sgn}\sigma\alpha(v_{\sigma(1)},\dotsc,v_{\sigma(k)})\beta(v_{\sigma(k+1)},\dotsc,v_{\sigma(k+\ell)}),$$

where some others define it with a coefficient in front of it involving factorials of $\ell$ and $k$. I tried all I could to prove the above identity. I reduced it to proving the case $\alpha=df$. And I'm simply stuck on that case. No matter what, there are sign problems. So could you help me figure this out? Are there coefficients missing with my definition of wedge btw?

Best Answer

If we let brackets denote unnormalized antisymmetrization to match your wedge convention, then in index notation we have (choosing a basis $e_{i_k}$ with $e_1 = X$)

$$\begin{align*} \iota_X (\alpha \wedge \beta)_{i_2 \ldots i_{k+l}} &= \alpha_{[i_1 \ldots i_{k}} \beta_{i_{k+1} \ldots i_{k+l}]}. \end{align*}$$

Now let us expand just the $i_1$ in the antisymmetrization:

$$\begin{align*} \iota_X (\alpha \wedge \beta)_{i_2 \ldots i_{k+l}} &= \alpha_{i_1 [i_2\ldots i_{k}} \beta_{i_{k+1} \ldots i_{k+l}]} \\ &- \alpha_{[i_2|i_1|i_3\ldots i_{k}} \beta_{i_{k+1} \ldots i_{k+l}]} \\ &+ \alpha_{[i_2 i_3|i_1|i_4\ldots i_{k}} \beta_{i_{k+1} \ldots i_{k+l}]} \\ &\;\vdots\\ &+(-1)^k \alpha_{[i_2 i_3 i_4\ldots i_{k+1}} \beta_{|i_1 |i_{k+2} \ldots i_{k+l}]} \\ &-(-1)^k \alpha_{[i_2 i_3 i_4\ldots i_{k+1}} \beta_{i_{k+2}|i_1 |i_{k+3} \ldots i_{k+l}]}\\ &\;\vdots \end{align*}$$

Now separating this in to two sums, note that by shifting $i_1$ to the first slot of whichever form it appears in we eliminate the alternating signs, leaving us with

$$ \iota_X (\alpha \wedge \beta)_{i_2 \ldots i_{k+l}} = k\alpha_{i_1 [i_2 \ldots i_k} \beta_{i_{k+1}\ldots i_{k+l}]} + l(-1)^k \alpha_{[i_2 \ldots i_{k+1}} \beta_{|i_1|i_{k+2} \ldots i_{k+l}]}\\ = k(\iota_X \alpha)_{[i_2 \ldots i_k} \beta_{i_{k+1}\ldots i_{k+l}]} + l(-1)^k \alpha_{[i_2 \ldots i_{k+1}} (\iota_X \beta)_{i_{k+2} \ldots i_{k+l}]} $$

and so it seems the correct formula for your definition of the wedge product is in fact

$$ \iota_X (\alpha \wedge \beta) = k(\iota_X \alpha) \wedge \beta + l(-1)^k \alpha \wedge (\iota_X \beta).$$

Related Question