[Math] Interchange of expectation and summation

expectationprobabilityprobability theory

Assume $(\Omega,\mathscr{F},P)$ is a probability space and $\{X_n\}_{n\geq 1}$ is a sequence of random variables. Let $\{A_n\}_{n\geq 1}$ be a measurable partition of $\Omega$. My question is when the following equality holds:$$E\Big(\sum_{n=1}^\infty X_n1_{A_n}\Big)=\sum_{n=1}^\infty E\big(X_n1_{A_n}\big).$$

Of course, if $\sup_n|X_n|\leq X$ for some integrable $X$, then this is just an implication of dominated convergence theorem. My question is whether this is still true if $\sup_n X_n\leq X$ for some $X$ with $E(X)<+\infty$ if we allow $-\infty$ for expectation?

Thanks!

Best Answer

Oh, it is true.

Let $Y=\sum_{n=1}^\infty X_n1_{A_n}$ which is well defined because $\{A_n\}$ is a partition. It is easy to see $$Y^+=\sum_{n=1}^\infty X_n^+1_{A_n}\quad\mathrm{and}\quad Y^-=\sum_{n=1}^\infty X^{-}_n1_{A_n}.$$ Hence by monotone convergence theorem, $$EY^+=\sum_{n=1}^\infty E\big(X_n^+1_{A_n}\big)\quad\mathrm{and}\quad EY^-=\sum_{n=1}^\infty E\big(X_n^-1_{A_n}\big).$$ Because $EX<\infty$, or equivalently $EX^+<\infty$, we have $EY^+\leq EX^+<\infty$ since $X^+_n\leq X^+$ for all $n$. Therefore $$EY=EY^+-EY^-=\sum_{n=1}^\infty E\big(X_n^+1_{A_n}\big)-\sum_{n=1}^\infty E\big(X_n^-1_{A_n}\big)=\sum_{n=1}^\infty E\big(X1_{A_n}\big).$$

Related Question