[Math] Integrate $\int\frac{1}{\sin x+\cos x+\tan x+\cot x+\csc x+\sec x}dx$

calculusintegration

Solve the indefinite integral

$$
I=\int\frac{1}{\sin x+\cos x+\tan x+\cot x+\csc x+\sec x}\;dx
$$

My Attempt:

$$
\begin{align}
I&=\int\frac{1}{\sin x+\cos x+\frac{1}{\sin x \cos x}+\frac{\sin x +\cos x}{\sin x\cos x}}\;dx\\
\\
&=\int\frac{\sin x\cos x}{\left(\sin x+\cos x\right)\left(\sin x\cos x \right)+1+\left(\sin x+\cos x\right)}\;dx
\end{align}
$$

How can I complete the solution from here?

Best Answer

You want

$\begin{align} \int\frac{dx}{\sin x+\cos x+\tan x+\cot x+\csc x+\sec x} &= \int\frac{dx}{\sin x+\cos x+\frac{\sin x}{\cos x} +\frac{\cos x}{\sin x}+\frac1{\sin x}+\frac1{\cos x}}\\ &= \int\frac{\sin x \cos x\ dx}{\sin^2 x \cos x+\cos^2 x \sin x+\sin^2 x +\cos^2 x+\cos x+\sin x}\\ &= \int\frac{\sin x \cos x\ dx}{\sin x \cos x(\sin x+ \cos x)+1+\cos x+\sin x}\\ &= \int\frac{\sin x \cos x\ dx}{(\sin x \cos x+1)(\sin x+ \cos x)+1}\\ \end{align} $.

Applying substitutions $\sin x = \frac{2t}{1+t^2}, \cos x = \frac{1-t^2}{1+t^2}, dx = \frac{2 dt}{1+t^2}$, this becomes

$\begin{align} \int\frac{\sin x \cos x\ dx}{(\sin x \cos x+1)(\sin x+ \cos x)+1} &=\int\frac{\frac{(2t)(1-t^2)(2dt)}{(1+t^2)^3}} {(\frac{(2t)(1-t^2)}{(1+t^2)^2}+1)(\frac{2t}{1+t^2}+ \frac{1-t^2}{1+t^2})+1}\\ &=\int\frac{(2t)(1-t^2)(2dt)} {((2t)(1-t^2)+(1+t^2)^2)(1+2t-t^2)+(1+t^2)^3}\\ &=\int\frac{4t(1-t^2)dt} {((2t-2t^3)+1+2t^2+t^4)(1+2t-t^2)+1+3t^2+3t^4+t^6}\\ &=\int\frac{4t(1-t^2)dt} {(1+2t+2t^2-2t^3+t^4)(1+2t-t^2)+1+3t^2+3t^4+t^6}\\ &=\int\frac{4t(1-t^2)dt} {2 (t+1) (2 t^4-3 t^3+3 t^2+t+1)} \quad \text{ (according to Wolfram Alpha)}\\ &=\int\frac{2t(1-t)dt} {2 t^4-3 t^3+3 t^2+t+1}\\ \end{align} $.

According to Wolfram Alpha, that quartic can be factored as the product of two quadratics, but the coefficients look irrational.

I'll leave it at this.

Related Question