[Math] Integral representation of the Dirac Delta function

dirac deltadistribution-theoryfourier transform

Someone told me, without so much details, that I can use the following representation of $\delta$
$$
\delta(x)=\frac{1}{\sqrt{2\pi}}\frac{1}{g(-i\partial_x)}\tilde{g}(x),
$$

for a suitable function $g$ and where $\tilde{g}(x)=1/\sqrt{2\pi}\int g(y)e^{ixy}dy$ is the Fourier transform of $g$. How to show this? I believe one can start from the $\delta$ definition
\begin{align}
\delta(x)&=\frac{1}{2\pi}\int e^{ixy}dy\\
&=\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{2\pi}}\int \frac{1}{g(y)}g(y)e^{ixy}dy\\
\end{align}

and an integration by parts, but what boundary conditions or what properties the function $g$ must have (clearly a series decomposition)?

Best Answer

We start from $$ \delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ix\xi} \, d\xi . $$

If $g$ is analytic then $$ g(x) = \sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!}x^k $$ and we define $$ g(-i\partial_x) = \sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!}(-i\partial_x)^k . $$

Note now that $$ g(-i\partial_x) e^{ix\xi} = \sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!}(-i\partial_x)^k e^{ix\xi} = \sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!}(-i\cdot i\xi)^k e^{ix\xi} = \sum_{k=0}^{\infty} \frac{g^{(k)}(0)}{k!}\xi^k e^{ix\xi} = g(\xi) e^{ix\xi} . $$

Therefore, applying $g(-i\partial_x)$ on $\delta$ gives $$ g(-i\partial_x) \delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(-i\partial_x) e^{ix\xi} \, d\xi = \frac{1}{2\pi} \int_{-\infty}^{\infty} g(\xi) e^{ix\xi} \, d\xi = \frac{1}{\sqrt{2\pi}} \tilde{g}(x) $$ from which we conclude $$ \delta(x) = \frac{1}{\sqrt{2\pi}} g(-i\partial_x)^{-1} \tilde{g}(x) . $$

Related Question