[Math] Integral of $\int_\sqrt{2}^2 \frac{dt}{t^2 \sqrt{t^2-1}}$

calculusdefinite integralsintegration

I am trying to find $$\int_\sqrt{2}^2 \frac{dt}{t^2 \sqrt{t^2-1}}$$

$t = \sec \theta$ $dt = \sec \theta \tan\theta $

$$\int_\sqrt{2}^2 \frac{dt}{\sec ^2 \theta \sqrt{\sec^2 \theta-1}}$$

$$\int_\sqrt{2}^2 \frac{dt}{\sec ^2 \theta \tan^2 \theta}$$

$$\int_\sqrt{2}^2 \frac{\sec \theta \tan\theta}{\sec ^2 \theta \tan^2 \theta}$$

$$\int_\sqrt{2}^2 \frac{1}{\sec \theta}$$

$$\int_\sqrt{2}^2 \cos \theta$$

$$\sin \theta$$

Then I need to make it in terms of t.

$t = \sec \theta$

So I just use the arcsec which is

$\theta =\operatorname{arcsec} t$

$$\sin (\operatorname{arcsec} t)$$

This is wrong but I am not sure why.

Best Answer

These are the mistakes you have made:

  • When you substitute $t = \sec\theta$ the limits will change accordingly.

  • And $\sqrt{\sec^{2}\theta -1} \neq \tan^{2}\theta$ , its $\tan\theta$.

  • When $t= \sec\theta$, $\theta$ will change from $\frac{\pi}{4}$ to $\frac{\pi}{3}$.

  • When you make the change there will be a $d\theta$ term.

  • Your integral will look like $\displaystyle \int_{\pi/4}^{\pi/6} \frac{\sec\theta \tan\theta}{\sec^{2}\theta \cdot \tan\theta} \ d\theta = \int_{\pi/4}^{\pi/6} \cos\theta \ d\theta$.

Related Question