[Math] Integral ${\large\int}_0^1\ln^3\!\left(1+x+x^2\right)dx$

closed-formdefinite integralshypergeometric functionpolygammapolylogarithm

I'm interested in this integral:
$$I=\int_0^1\ln^3\!\left(1+x+x^2\right)dx.\tag1$$
Can we prove that
$$\begin{align}I&\stackrel{\color{gray}?}=\frac32\ln^33-9\ln^23+36\ln3+2\pi^2\ln3-\frac{4\pi^2}3+\left(8-\ln^23-4\ln3\right)\cdot\frac{\pi\sqrt3}2\\&-48-\frac{7\pi^3}{6\sqrt3}+(2-3\ln3)\cdot\psi^{(1)}\!\left(\tfrac13\right)+36\,{_4F_3}\!\left(\begin{array}c\tfrac12,\tfrac12,\tfrac12,\tfrac12\\\tfrac32,\tfrac32,\tfrac32\end{array}\middle|\,\tfrac34\right)\end{align}\tag2$$
of find a simpler closed form?

Also, can we prove that
$${_4F_3}\!\left(\begin{array}c\tfrac12,\tfrac12,\tfrac12,\tfrac12\\\tfrac32,\tfrac32,\tfrac32\end{array}\middle|\,\tfrac34\right)\stackrel{\color{gray}?}=\frac{71\pi^3}{1296\sqrt3}+\frac{5\pi}{48\sqrt3}\ln^23-\frac1{\sqrt3}\,\Im\operatorname{Li}_3\!\left[\frac{(-1)^{\small1/6}}{\sqrt3}\right]\tag3$$
or find a simpler expression for it?

Best Answer

A Recurrence Relation

I will use the notation $$\mathcal{A}_n=\int^1_0\ln^n(1+x+x^2)\ {\rm d}x\ \ \ , \ \ \ \mathcal{B}_n=\int^\frac{\pi}{3}_\frac{\pi}{6}\ln^n\left(\frac{3}{4\cos^2{x}}\right)\ {\rm d}x$$ Integrating by parts and applying the substitution $\displaystyle x+\frac{1}{2}\mapsto \frac{\sqrt{3}}{2}\tan{x}$, it is evident that $$\mathcal{A}_n=n\sqrt{3}\mathcal{B}_{n-1}-2n\mathcal{A}_{n-1}+\frac{3}{2}(\ln{3})^n$$ We may use this recurrence to compute $\mathcal{A}_n$ for small positive integer values of $n$.


Evaluation of $\mathcal{A}_1$

We immediately have $$\mathcal{A}_1=1\times\sqrt{3}\times\frac{\pi}{6}-2\times 1\times 1+\frac{3}{2}\ln{3}=\frac{\pi}{2\sqrt{3}}+\frac{3}{2}\ln{3}-2$$


Evaluation of $\mathcal{A}_2$

We first compute $\mathcal{B}_1$ by exploiting a Fourier series. \begin{align} \mathcal{B}_1 &=\frac{\pi}{6}\ln{3}-2\int^\frac{\pi}{3}_\frac{\pi}{6}\ln(2\cos{x})\ {\rm d}x\\ &=\frac{\pi}{6}\ln{3}+2\sum^\infty_{n=1}\frac{(-1)^n}{n}\int^\frac{\pi}{3}_\frac{\pi}{6}\cos(2nx)\ {\rm d}x\\ &=\frac{\pi}{6}\ln{3}+\sum^\infty_{n=1}\frac{(-1)^n}{n^2}\left(\sin\left(\frac{2n\pi}{3}\right)-\sin\left(\frac{n\pi}{3}\right)\right)\\ &=\frac{\pi}{6}\ln{3}-\frac{1}{12\sqrt{3}}\sum^\infty_{n=0}\left[\frac{1}{\left(n+\frac{1}{3}\right)^2}-\frac{1}{\left(n+\frac{2}{3}\right)^2}\right]\\ &=-\frac{1}{6\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{\pi^2}{9\sqrt{3}}+\frac{\pi}{6}\ln{3} \end{align} Therefore, \begin{align} \mathcal{A}_2 &=2\sqrt{3}\left(-\frac{1}{6\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{\pi^2}{9\sqrt{3}}+\frac{\pi}{6}\ln{3}\right)-4\left(\frac{\pi}{2\sqrt{3}}+\frac{3}{2}\ln{3}-2\right)+\frac{3}{2}\ln^2{3}\\ &=-\frac{1}{3}\psi_1\left(\frac{1}{3}\right)+\frac{2\pi^2}{9}+\frac{\pi}{\sqrt{3}}\ln{3}+\frac{3}{2}\ln^2{3}-\frac{2\pi}{\sqrt{3}}-6\ln{3}+8 \end{align}


Simplification of Some ${\rm Li}_2,\ {\rm Li}_3$ Terms

I will simplify the terms $$\color{red}{{\rm Li}_2(e^{-\pi i/3})},\ \color{blue}{{\rm Li}_2(1-e^{2\pi i/3})},\ \color{green}{\Im{\rm Li}_3(e^{\pi i/3})},\ \color{purple}{\Im{\rm Li}_3(e^{-\pi i/3})},\ \color{brown}{\Im{\rm Li}_3(e^{2\pi i/3})}$$ The identities (for $0<\theta<2\pi$), \begin{align} \sum^\infty_{n=1}\frac{\cos(n\theta)}{n^2}&=\frac{\theta^2}{4}-\frac{\pi\theta}{2}+\frac{\pi^2}{6}\\ \sum^\infty_{n=1}\frac{\sin(n\theta)}{n^3}&=\frac{\theta^3}{12}-\frac{\pi\theta^2}{4}+\frac{\pi^2\theta}{6}\\ \end{align} (which can be derived by considering $\Im\ln(1-e^{i\theta})$ and integrating), give us \begin{align} \Im{\rm Li}_3(e^{\pm\pi i/3}) =&\pm\frac{5\pi^3}{162}\\ \Im{\rm Li}_3(e^{2\pi i/3}) &=\frac{2\pi^3}{81}\\ {\rm Li}_2(e^{-\pi i/3}) &=\frac{\pi^2}{36}-i\sum^\infty_{n=1}\frac{\sin(n\pi/3)}{n^2}\\ &=\frac{\pi^2}{36}-\frac{i\sqrt{3}}{2}\sum^\infty_{n=0}\left[\frac{1}{(6n+1)^2}+\frac{1}{(6n+2)^2}-\frac{1}{(6n+4)^2}-\frac{1}{(6n+5)^2}\right]\\ &=\frac{\pi^2}{36}-\frac{i}{24\sqrt{3}}\left(\psi_1\left(\frac{1}{6}\right)+\psi_1\left(\frac{1}{3}\right)-\psi_1\left(\frac{2}{3}\right)-\psi_1\left(\frac{5}{6}\right)\right)\\ &=\frac{\pi^2}{36}-i\left(\frac{1}{2\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{\pi^2}{3\sqrt{3}}\right) \end{align} Furthermore, the dilogarithm reflection formula states $${\rm Li}_2(z)+{\rm Li}_2(1-z)=\frac{\pi^2}{6}-\ln{z}\ln(1-z)$$ Hence \begin{align} {\rm Li}_2(1-e^{2\pi i/3}) &=\frac{\pi^2}{6}-\frac{2\pi i}{3}\left(\frac{\ln{3}}{2}-\frac{\pi i}{6}\right)-\left(-\frac{\pi^2}{18}+i\sum^\infty_{n=1}\frac{\sin(2n\pi/3)}{n^2}\right)\\ &=\frac{\pi^2}{6}-\frac{2\pi i}{3}\left(\frac{\ln{3}}{2}-\frac{\pi i}{6}\right)-\left(-\frac{\pi^2}{18}+\frac{i\sqrt{3}}{2}\sum^\infty_{n=0}\left[\frac{1}{(3n+1)^2}-\frac{1}{(3n+2)^2}\right]\right)\\ &=\frac{\pi^2}{9}-i\left(\frac{1}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{2\pi^2}{9\sqrt{3}}+\frac{\pi}{3}\ln{3}\right) \end{align}


Evaluation of $\mathcal{A}_3$

Similarly, we start with the evaluation of $\mathcal{B}_2$. \begin{align} \mathcal{B}_2 &=\int^\frac{\pi}{3}_\frac{\pi}{6}\ln^2{3}-4\ln{3}\ln(2\cos{x})+4x^2+4\operatorname{Re}\ln^2(1+e^{2ix})\ {\rm d}x\\ &=-\frac{\ln{3}}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{7\pi^3}{162}+\frac{2\pi^2}{9\sqrt{3}}\ln{3}+\frac{\pi}{6}\ln^2{3}+8\Re\sum^\infty_{n=1}\frac{(-1)^{n}H_{n-1}}{n}\int^\frac{\pi}{3}_\frac{\pi}{6}e^{2inx}\ {\rm d}x\\ &=-\frac{\ln{3}}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{7\pi^3}{162}+\frac{2\pi^2}{9\sqrt{3}}\ln{3}+\frac{\pi}{6}\ln^2{3}-4\sum^\infty_{n=1}\frac{1}{n^3}\left(\sin\left(\frac{2\pi n}{3}\right)-\sin\left(\frac{\pi n}{3}\right)\right)\\ &\ \ \ \ \ +4\Im\sum^\infty_{n=1}\frac{H_{n}}{n^2}\left(e^{2\pi in/3}-e^{\pi in/3}\right)\\ &=-\frac{\ln{3}}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)+\frac{11\pi^3}{162}+\frac{2\pi^2}{9\sqrt{3}}\ln{3}+\frac{\pi}{6}\ln^2{3}\\ &\ \ \ \ \ +4\Im\left[{\rm Li}_3(z)-{\rm Li}_3(1-z)+{\rm Li}_2(1-z)\ln(1-z)+\frac{1}{2}\ln{z}\ln^2(1-z)+\zeta(3)\right]^{e^{2\pi i/3}}_{e^{\pi i/3}} \end{align} where I used the generating function of $\dfrac{H_n}{n^2}$. Using results derived in the previous section, \begin{align} &\ \ \ \ \Im\left[{\rm Li}_3(z)-{\rm Li}_3(1-z)+{\rm Li}_2(1-z)\ln(1-z)+\frac{1}{2}\ln{z}\ln^2(1-z)+\zeta(3)\right]^{e^{2\pi i/3}}_{e^{\pi i/3}}\\ &=\color{brown}{\frac{2\pi^3}{81}}-\color{green}{\frac{5\pi^3}{162}}+\color{purple}{\left(-\frac{5\pi^3}{162}\right)}-\Im{\rm Li}_3(1-e^{2\pi i/3})\\ &\ \ \ \ +\Im\color{blue}{\left(\frac{\pi^2}{9}-i\left(\frac{1}{3\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{2\pi^2}{9\sqrt{3}}+\frac{\pi}{3}\ln{3}\right)\right)}\left(\frac{\ln{3}}{2}-\frac{\pi i}{6}\right)\\ &\ \ \ \ -\Im\color{red}{\left(\frac{\pi^2}{36}-i\left(\frac{1}{2\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{\pi^2}{3\sqrt{3}}\right)\right)}\left(-\frac{\pi i}{3}\right)+\frac{\pi^3}{108}+\frac{\pi}{12}\ln^2{3}\\ &=-\Im{\rm Li}_3(1-e^{2\pi i/3})-\frac{\ln{3}}{6\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{\pi^3}{27}+\frac{\pi^2}{9\sqrt{3}}\ln{3}-\frac{\pi}{12}\ln^2{3} \end{align} Therefore \begin{align} \mathcal{B}_2 &=-4\Im{\rm Li}_3(1-e^{2\pi i/3})-\frac{\ln{3}}{\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{13\pi^3}{162}+\frac{2\pi^2}{3\sqrt{3}}\ln{3}-\frac{\pi}{6}\ln^2{3} \end{align} and finally, \begin{align} \mathcal{A}_3 &=3\sqrt{3}\left(-4\Im{\rm Li}_3(1-e^{2\pi i/3})-\frac{\ln{3}}{\sqrt{3}}\psi_1\left(\frac{1}{3}\right)-\frac{13\pi^3}{162}+\frac{2\pi^2}{3\sqrt{3}}\ln{3}-\frac{\pi}{6}\ln^2{3}\right)\\ &\ \ \ \ -6\left(-\frac{1}{3}\psi_1\left(\frac{1}{3}\right)+\frac{2\pi^2}{9}+\frac{\pi}{\sqrt{3}}\ln{3}+\frac{3}{2}\ln^2{3}-\frac{2\pi}{\sqrt{3}}-6\ln{3}+8\right)+\frac{3}{2}\ln^3{3}\\ &=\color{darkorange}{-12\sqrt{3}\Im{\rm Li}_3(1-e^{2\pi i/3})+(2-3\ln{3})\psi_1\left(\frac{1}{3}\right)+\frac{3}{2}\ln^3{3}-\left(\frac{\sqrt{3}\pi}{2}+9\right)\ln^2{3}}\\ &\ \ \ \ \color{darkorange}{+(2\pi^2-2\sqrt{3}\pi)\ln{3}-\left(\frac{13\sqrt{3}\pi^3}{54}+\frac{4\pi^2}{3}-4\sqrt{3}\pi-36\ln{3}+48\right)} \end{align}

Related Question