Calculus – Evaluating Integral Involving Polylogarithm and Arctan

calculusclosed-formdefinite integralsintegrationpolylogarithm

Please help me to evaluate this integral in a closed form:
$$I=\int_0^\infty\text{Li}_2\left(e^{-\pi x}\right)\arctan x\,dx$$
Using integration by parts I found that it could be expressed through integrals of elementary functions:
$$I_1=\int_0^\infty\log\left(1-e^{-\pi x}\right)\log\left(1+x^2\right)dx$$
$$I_2=\int_0^\infty x\log\left(1-e^{-\pi x}\right)\arctan x\,dx$$

Best Answer

We have $$\int_{0}^{\infty}\textrm{Li}_{2}\left(e^{-\pi x}\right)\arctan\left(x\right)dx=\sum_{k\geq1}\frac{1}{k^{2}}\int_{0}^{\infty}e^{-\pi kx}\arctan\left(x\right)dx=\frac{1}{\pi}\sum_{k\geq1}\frac{1}{k^{3}}\int_{0}^{\infty}\frac{e^{-\pi kx}}{1+x^{2}}dx $$ and this is the Laplace transform of $\frac{1}{1+x^{2}} $ at $s=\pi k $. This can be calculated (see for example here for $s=1 $) $$\frac{1}{\pi}\sum_{k\geq1}\frac{1}{k^{3}}\left(\textrm{Ci}\left(\pi k\right)\sin\left(\pi k\right)+\frac{\pi\cos\left(\pi k\right)}{2}-\textrm{Si}\left(\pi k\right)\cos\left(\pi k\right)\right)=$$ $$=-\frac{3}{8}\zeta\left(3\right)-\frac{1}{\pi}\sum_{k\geq1}\frac{\left(-1\right)^{k}}{k^{3}}\textrm{Si}\left(\pi k\right) $$ where $\textrm{Ci}\left(x\right) $ and $\textrm{Si}\left(x\right) $ are the cosine and the sine integral. Now note, using the power series of $\textrm{Si}\left(x\right) $ $$\sum_{k\geq1}\frac{\left(-1\right)^{k}}{k^{3}}\textrm{Si}\left(\pi k\right)=\sum_{k\geq1}\frac{\left(-1\right)^{k}}{k^{3}}\sum_{n\geq1}\left(-1\right)^{n-1}\frac{\left(\pi k\right)^{2n-1}}{\left(2n-1\right)\left(2n-1\right)!}=$$ $$=\sum_{n\geq1}\left(-1\right)^{n-1}\frac{\pi^{2n-1}\left(2^{2n-3}-1\right)\zeta\left(4-2n\right)}{\left(2n-1\right)\left(2n-1\right)!} =\pi\left(2^{-1}-1\right)\zeta\left(2\right)-\frac{\pi^{3}\zeta\left(0\right)}{18}=$$ $$=-\frac{\pi^{3}}{18} $$ because $\zeta\left(-2n\right)=0,\,\forall n\geq1 $. So we have $$\int_{0}^{\infty}\textrm{Li}_{2}\left(e^{-\pi x}\right)\arctan\left(x\right)dx=-\frac{3}{8}\zeta\left(3\right)+\frac{\pi^{2}}{18} $$ as conjectured by dbanet.

Related Question