[Math] Integral $\int_{0}^{3} \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx$

calculusclosed-formdefinite integralsintegration

I recently got stuck on evaluating the following integral,
$$ \int_{0}^{3} \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx. $$
Is it possible to evaluate this integral in a closed form? I am not sure if there is one, but the integrand seems simple enough, so I hope it might exist.

Best Answer

Let's decompose your integral in three terms : \begin{align} I&:=\int_0^3 \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx=I_1+I_2+I_3\\ &=\int_0^1 \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx+\int_1^\infty \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx-\int_3^\infty \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx\\ &=\int_0^{\pi/2} \frac{e^{-\sin(t)^2}}{\sqrt{1-\sin(t)^2}} \,d(\sin(t))+\int_0^\infty \frac{e^{-\cosh(u)^2}}{i\sqrt{\cosh(u)^2-1}} \,d\left(\cosh(u)\right)-\int_3^\infty \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx\\ &=\int_0^{\pi/2} e^{\cos(2t)/2-1/2}\,dt-i\int_0^\infty e^{-\cosh(2u)/2-1/2} \,du-\int_3^\infty \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx\\ &=\frac 1{2\,\sqrt{e}}\left(\pi\,\operatorname{I}_0\left(\frac 12\right)-i\operatorname{K}_0\left(\frac 12\right)\right)-\int_3^\infty \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx\\ \end{align}

Using the integral for $\operatorname{I}$, the integral for $\operatorname{K}$.
Wolfram Alpha proposes to simplify this as $\;\displaystyle I=-\frac {i}{2\,\sqrt{e}}\,\operatorname{K}_0\left(-\frac 12\right)-\int_3^\infty \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx\;$ (probably using this relation for $m=1,n=0$) but there is a sign error in its result for the real part.

In summary (for $x>1$ the terms are imaginary since $1-x^2<0$) :

  • the first term is real $\quad\displaystyle I_1=\frac {\pi}{2\,\sqrt{e}}\,\operatorname{I}_0\left(\frac 12\right)\approx 1.013219033$
  • the second is imaginary $\displaystyle I_2=-\frac {i}{2\,\sqrt{e}}\,\operatorname{K}_0\left(-\frac 12\right)\approx -i\cdot 0.2803442545$
  • the remaining term is imaginary too and rather small : $$I_3=-\int_3^\infty \frac{e^{-x^2}}{\sqrt{1-x^2}} \,dx=\frac {i}{\sqrt{e}}\int_{\operatorname{arccosh}(3)}^\infty e^{-\cosh(2u)/2} \,du\approx i\cdot 0.000006566431462$$ I dont think it may be written in 'closed-form' except possibly as an 'incomplete modified Bessel function' or something like that (i.e. nearly equivalent to the integral definition...).
    An approximation is obtained with $\displaystyle I_3\approx \frac {i}{2\,\sqrt{e}}\operatorname{Ei}\left(-\frac{e^{2\,\operatorname{arccosh}(3)}}4\right)$ since $\displaystyle \int_a^\infty e^{-\frac 14 e^{2u}} \,du=\frac 12\operatorname{Ei}\left(-\frac{e^{2a}}4\right)\approx\frac{e^{-e^{2a}/4}}{2\,e^{2a}/4}\;$ (with $\operatorname{Ei}$ the exponential integral).
    (btw $\,e^{2\,a}=e^{2\,\operatorname{arccosh}(3)}=17+12\sqrt{2}$)
    and we may get many better ones but not the asked closed form...
Related Question