[Math] Integral $\int \frac{dx}{\tan x + \cot x + \csc x + \sec x}$

indefinite-integralsintegrationsubstitutiontrigonometric-integrals

$$\int \frac{dx}{\tan x + \cot x + \csc x + \sec x}$$
$$\tan x + \cot x + \csc x + \sec x=\frac{\sin x + 1}{\cos x} +\frac{\cos x + 1}{\sin x} $$
$$= \frac{\sin x +\cos x +1}{\sin x \cos x}$$
$$t= \tan {\frac{x}{2}}$$
On solving ,
$$\frac{1}{\tan x + \cot x + \csc x + \sec x}=\frac{t(1- t)}{1+ t^2}$$
$$\implies \int \frac{\tan {\frac{x}{2}}(1-\tan {\frac{x}{2}})}{1+\tan^2 {\frac{x}{2}}}{dx}$$

I think, I have made the things more difficult. How can I proceed further? Is there any better substitution for it?

Best Answer

$\displaystyle\int \frac{dx}{\tan x + \cot x + \csc x + \sec x}=$

$\displaystyle\int\frac{\sin x\cos x}{1+\sin x+\cos x}\,dx=\int\frac{\sin x\cos x}{1+\sin x+\cos x}\cdot\frac{1-(\sin x+\cos x)}{1-(\sin x+\cos x)}\,dx$

$=\displaystyle\int\frac{\sin x\cos x(1-(\sin x+\cos x))}{1-(\sin x+\cos x)^2}\,dx=\int\frac{\sin x\cos x-\sin^2 x\cos x-\cos^2x\sin x}{-2\sin x\cos x}\,dx$

$\displaystyle=-\frac{1}{2}\int(1-\sin x-\cos x)\,dx=\frac{1}{2}(-x-\cos x+\sin x)+C$

Related Question