[Math] Integral for the New Year $2019$!

definite integralsintegrationrecreational-mathematics

Does the following transition between $2018$ and $2019$ hold true?$$\large\bbox[10pt,#000,border:5px solid green]{\color{#58A}{\color{#A0A}\int_{\color{#0F5}{-\infty}}^{\color{#0F5}{+\infty}} \frac{\color{yellow}\sin\left(\color{#0AF}x\color{violet}-\frac{\color{tomato}{2018}}{\color{#0AF}x}\right)}{\color{#0AF}x\color{violet}+\frac{\color{aqua}1}{\color{#0AF}x}} \color{#A0A}{\mathrm d}\color{#0AF}x\color{aqua}=\frac{\color{magenta}\pi}{\color{magenta}e^{\color{red}{2019}}}}}$$
$$\large\color{red}{\text{Happy new year!}}$$


I must say that I got lucky arriving at this integral.

Earlier this year I have encountered the following integral:$$\int_0^\infty \frac{\sqrt{x^4+3x^2+1}\cos\left[x-\frac{1}{x} +\arctan\left(x+\frac{1}{x}\right)\right]}{x(x^2+1)^2}dx=\frac34\cdot \frac{\pi}{e^2}$$
Which at the first sight looks quite scary, but after some manipulations it breaks up into two integrals, one of which is:$$\int_{-\infty}^\infty \frac{\sin\left(x-\frac{1}{x}\right)}{x+\frac{1}{x}}dx$$
And while trying to solve it I also noticed a pattern on an integral of this type.

Also today when I saw this combinatorics problem I tried to make something similar and remembered about the older integral. $\ddot \smile$


If you have other integral of the same type feel free to add!

Best Answer

$$\int_0^{\pi } \frac{2 \sin (2018 x) \sin (x)}{1-2 e \cos (x)+e^2} \, dx=\frac{\pi }{e^{2019}}$$

$$\int_0^1 (-\ln (x))^{2018} \, dx=\Gamma (2019)$$

$$\int_0^1 \frac{\frac{1-x^{2018}}{1-x}-2018}{\ln (x)} \, dx=\ln (\Gamma (2019))$$

$$\int_0^{\infty } \frac{\tan ^{-1}(2018 x)}{x \left(1+x^2\right)} \, dx=\frac{1}{2} \pi \ln (2019)$$

Related Question