[Math] $\int_{0}^{\infty}\frac{\sin^{2n+1}(x)}{x} \mathrm {d}x$ Evaluate Integral

calculusimproper-integralsintegrationtrigonometry

Here is a fun integral I am trying to evaluate:

$$\int_{0}^{\infty}\frac{\sin^{2n+1}(x)}{x} \ dx=\frac{\pi \binom{2n}{n}}{2^{2n+1}}.$$

I thought about integrating by parts $2n$ times and then using the binomial theorem for $\sin(x)$, that is, using $\dfrac{e^{ix}-e^{-ix}}{2i}$ form in the binomial series.

But, I am having a rough time getting it set up correctly. Then, again, there is probably a better approach.

$$\frac{1}{(2n)!}\int_{0}^{\infty}\frac{1}{(2i)^{2n}}\sum_{k=0}^{n}(-1)^{2n+1-k}\binom{2n}{k}\frac{d^{2n}}{dx^{2n}}(e^{i(2k-2n-1)x})\frac{dx}{x^{1-2n}}$$

or something like that. I doubt if that is anywhere close, but is my initial idea of using the binomial series for sin valid or is there a better way?.

Thanks everyone.

Best Answer

Using $$ \sin^{2n+1}(x) = \sum_{k=0}^n \frac{(-1)^k }{4^n} \binom{2n+1}{n+k+1} \sin\left((2k+1)x\right) $$ We get $$ \begin{eqnarray} \int_0^\infty \frac{\sin^{2n+1}(x)}{x}\mathrm{d} x &=& \sum_{k=0}^n \frac{(-1)^k }{4^n} \binom{2n+1}{n+k+1}\int_0^\infty \frac{\sin\left((2k+1)x\right)}{x}\mathrm{d} x\\ &=& \sum_{k=0}^n \frac{(-1)^k }{4^n} \binom{2n+1}{n+k+1}\int_0^\infty \frac{\sin\left(x\right)}{x}\mathrm{d} x \\ &=& \frac{\pi}{2^{2n+1}}\sum_{k=0}^n (-1)^k \binom{2n+1}{n+k+1} = \frac{\pi}{2^{2n+1}} \binom{2n}{n} \end{eqnarray} $$ The latter sum is evaluated using telescoping trick: $$ \sum_k (-1)^k \binom{2n+1}{n+k+1} = \sum_k (-1)^k \frac{2n+1}{n+k+1} \binom{2n}{n+k} = (-1)^{k+1} \binom{2n}{n+k} =: g(k) $$ meaning that $$ g(k+1) - g(k) = (-1)^k \binom{2n+1}{n+k+1} $$ Hence $$ \sum_{k=0}^n (-1)^k \binom{2n+1}{n+k+1} = \sum_{k=0}^n \left(g(k+1)-g(k)\right) = g(n+1) - g(0) = -g(0) = \binom{2n}{n} $$

Related Question