Calculus – Evaluating $\int_0^1\frac{x^7-1}{\log(x)}\mathrm{dx}$

calculusdefinite integralsimproper-integralsintegration

/A problem from the 2012 MIT Integration Bee is
$$
\int_0^1\frac{x^7-1}{\log(x)}\mathrm dx
$$
The answer is $\log(8)$. Wolfram Alpha gives an indefinite form in terms of the logarithmic integral function, but times out doing the computation. Is there a way to do it by hand?

Best Answer

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\dd}{{\rm d}}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\ic}{{\rm i}}% \newcommand{\imp}{\Longrightarrow}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert #1 \right\vert}% \newcommand{\yy}{\Longleftrightarrow}$ $\ds{\pp\pars{\mu} \equiv \int_{0}^{1}{x^{\mu} - 1 \over \ln\pars{x}}\,\dd x}$

$$ \pp'\pars{\mu} \equiv \int_{0}^{1}{x^{\mu}\ln\pars{x} \over \ln\pars{x}}\,\dd x = \int_{0}^{1}x^{\mu}\,\dd x = {1 \over \mu + 1} \quad\imp\quad \pp\pars{\mu} - \overbrace{\pp\pars{0}}^{=\ 0} = \ln\pars{\mu + 1} $$

$$ \pp\pars{7} = \color{#0000ff}{\large\int_{0}^{1}{x^{7} - 1 \over \ln\pars{x}} \,\dd x} = \ln\pars{7 + 1} = \ln\pars{8} = \color{#0000ff}{\large 3\ln\pars{2}} $$