[Math] $\int cos^5(x) dx$ with reduction formula

indefinite-integralsintegration

I'm trying to calculate $$\int cos^5(x)dx$$ with the reduction formula.

$$\int cos^5(x)dx=\frac{1}{5}cos^4(x)sin(x)+\frac{4}{5}\int cos^3(x)dx$$
then
$$\int cos^3(x)dx=\frac{1}{3}cos^2(x)sin(x)+\frac{2}{3}\int cos(x)dx$$
so
$$\int cos^5(x)dx=\frac{1}{5}cos^4(x)sin(x)+\frac{4}{5}(\frac{1}{3}cos^2(x)sin(x)+\frac{2}{3}sin(x))$$

But this looks different from:

$$\frac{1}{5}sin^5(x)-\frac{2}{3}sin^3(x)+sin(x)$$

given by:

https://www.symbolab.com/solver/step-by-step/%5Cint%20cos%5E%7B5%7D%5Cleft%28x%5Cright%29dx/?origin=button

Best Answer

Converting the cosines in your answer to sines via the pythagorean identity, $\cos ^2x=1-\sin ^2x$ yields:

$\frac{1}{5}\cos^4(x)\sin(x)+\frac{4}{5}(\frac{1}{3}\cos^2(x)\sin(x)+\frac{2}{3}\sin(x))$ $=\frac{1}{5}(1-\sin^2(x))^2\sin(x)+\frac{4}{5}(\frac{1}{3}(1-\sin^2(x))\sin(x)+\frac{2}{3}\sin(x))$

Simplifying from there:

$=\frac{1}{5}(1-2\sin^2(x)+\sin^4(x))\sin(x)+\frac{4}{5}(\frac{1}{3}\sin(x)-\frac{1}{3}\sin^3(x))+\frac{2}{3}\sin(x))$

$=\frac{1}{5}\sin(x)-\frac{2}{5}\sin^3(x)+\frac{1}{5}\sin^5(x)+\frac{4}{15}\sin(x)-\frac{4}{15}\sin^3(x))+\frac{8}{15}\sin(x)$

$=\frac{1}{5}\sin^5(x)-\frac{2}{3}\sin^3(x)+\sin(x)$

Which agrees with the answer from the solver.

Related Question