Geometry – Perpendiculars from Arbitrary Point Inside Equilateral Triangle

geometry

Inside an equilateral triangle $ABC$,an arbitrary point $P$ is taken from which the perpendiculars $PD,PE$ and $PF$ are dropped onto the sides $BC,CA$ and $AB$,respectively.Show that the ratio $\dfrac{PD+PE+PF}{BD+CE+AF}$ does not depend upon the choice of the point $P$ and find its value.

I have no idea how to proceed. I could not do anything beyond calculating the area of $PDB,PCE,PFA$ but here I get nothing. Please help!

Best Answer

For simplicity, let the sides of the triangle be $1$.

$\hspace{3.5cm}$enter image description here

Looking at the areas of the sub-triangles, we get $$ \begin{align} |\,\triangle ABP\,|&=\frac12|\,\overline{FP}\,|\times|\,\overline{AB}\,|=\frac12|\,\overline{FP}\,|\\ |\,\triangle BCP\,|&=\frac12|\,\overline{DP}\,|\times|\,\overline{BC}\,|=\frac12|\,\overline{DP}\,|\tag{1}\\ |\,\triangle CAP\,|&=\frac12|\,\overline{EP}\,|\times|\,\overline{CA}\,|=\frac12|\,\overline{EP}\,| \end{align} $$ Summing these, we get $$ |\,\overline{FP}\,|+|\,\overline{DP}\,|+|\,\overline{EP}\,|=2|\,\triangle ABC\,|=\frac{\sqrt3}{2}\tag{2} $$


Rename the distances in question as $x$, $y$, and $z$.

$\hspace{2.3cm}$enter image description here

Considering the vertical distances on sides $x$ and $y$ and then repeating the same for the other side pairs: $$ \begin{align} \frac{\sqrt3}{2}x+\frac12h_x&=\frac{\sqrt3}{2}(1-y)+\frac12h_y\\ \frac{\sqrt3}{2}y+\frac12h_y&=\frac{\sqrt3}{2}(1-z)+\frac12h_z\tag{3}\\ \frac{\sqrt3}{2}z+\frac12h_z&=\frac{\sqrt3}{2}(1-x)+\frac12h_x \end{align} $$ Adding these and cancelling results in $$ x+y+z=\frac32\tag{4} $$ That is $$ |\,\overline{FA}\,|+|\,\overline{DB}\,|+|\,\overline{EC}\,|=\frac32\tag{5} $$


Thus, $(2)$ and $(5)$ yield $$ \frac{|\,\overline{FP}\,|+|\,\overline{DP}\,|+|\,\overline{EP}\,|}{|\,\overline{FA}\,|+|\,\overline{DB}\,|+|\,\overline{EC}\,|}=\frac1{\sqrt3}\tag{6} $$