[Math] Infinite series for partial sums of square roots.

sequences-and-series

Can you prove these infinite series for partial sums of square roots?

$$\sqrt{1}=\sum\limits_{n=1}^{\infty } \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$$

$$\sqrt{1}+\sqrt{2}=\sum\limits_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}-\frac{2}{\sqrt{n+2}}\right)$$

$$\sqrt{1}+\sqrt{2}+\sqrt{3}=\sum\limits_{n=1}^{\infty } \left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}-\frac{3}{\sqrt{n+3}}\right)$$

$$\sqrt{1}+\sqrt{2}+\sqrt{3}+\sqrt{4}=\sum _{n=1}^{\infty } \left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}+\frac{1}{\sqrt{n+2}}+\frac{1}{\sqrt{n+3}}-\frac{4}{\sqrt{n+4}}\right)$$

$$\cdots$$

And is there some easy cancellation that I have missed on the right hand side?

Mathematica:

Clear[s, i, n, j]
s = 1/2; 
i = 1; 
j = 0; 
Sum[1/(n + 0)^s - 1/(n + 1)^s, {n, 1, Infinity}]
N[%, 20]
Sum[1/(n + 1)^s - 2/(n + 2)^s + 1/(n + 0)^s, {n, 1, Infinity}]
N[%, 20]
Sum[1/(n + 1)^s + 1/(n + 2)^s - 3/(n + 3)^s + 1/(n + 0)^s, 
   {n, 1, Infinity}]
N[%, 20]
Sum[1/(n + 1)^s + 1/(n + 2)^s + 1/(n + 3)^s - 4/(n + 4)^s + 
     1/(n + 0)^s, {n, 1, Infinity}]
N[%, 20]
N[Accumulate[Sqrt[Range[4]]], 20]

Best Answer

Let's see how we find the first sum which's known as telescoping sum and the other sums are almost the same: the idea is to change the index and then cancel most of the terms

$$\sum\limits_{n=1}^{\infty } \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\lim_{N\to\infty}\sum\limits_{n=1}^{N} \left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\lim_{N\to\infty}\sum\limits_{n=1}^{N} \frac{1}{\sqrt{n}}-\sum\limits_{n=2}^{N+1}\frac{1}{\sqrt{n}}\\=\lim_{N\to\infty}\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{N+1}}=\frac{1}{\sqrt{1}}$$

Related Question