[Math] Inductive proof of Cauchy’s inequality for complex numbers

complex numbersinductioninequality

I'm trying to put together an inductive proof of Cauchy's inequality for the complex case,
$$
\left|\sum_{i=1}^na_ib_i\right|^2\leq\sum_{i=1}^n|a_i|^2\sum_{i=1}^n|b_i|^2.
$$
The base case is easy, and at the inductive step I do as follows:
$$
\begin{align*}
\left|\sum_{i=1}^{n+1}a_ib_i\right|^2 =\left|\sum_{i=1}^n a_ib_i+a_{n+1}b_{n+1}\right|^2 &\leq\left(\left|\sum_{i=1}^n a_ib_i\right|+|a_{n+1}b_{n+1}|\right)^2\\
&= \left|\sum_{i=1}^n a_ib_i\right|^2+|a_{n+1}b_{n+1}|^2+2\left|\sum_{i=1}^na_ib_i\right||a_{n+1}b_{n+1}|\\
&\leq \sum_{i=1}^n|a_i|^2\sum_{i=1}^n |b_i|^2+|a_{n+1}b_{n+1}|^2+2|a_{n+1}b_{n+1}|\sum_{i=1}^n|a_i||b_i|
\end{align*}
$$
but I don't know what to do to conclude that the original sum is somehow less than or equal to $\sum_{i=1}^{n+1}|a_i|^2\sum_{i=1}^{n+1}|b_i|^2$. How can this be finished? Thanks.

Best Answer

Let $s^2=\sum\limits_{i=1}^n|a_i|^2$, $t^2=\sum\limits_{i=1}^n |b_i|^2$, $a=|a_{n+1}|$ and $b=|b_{n+1}|$. The RHS of the last displayed inequality in the post is $R=s^2t^2+a^2b^2+2ab\sum\limits_{i=1}^n|a_i|\,|b_i|$.

First step: Cauchy-Schwarz inequality yields $\sum\limits_{i=1}^n|a_i|\,|b_i|\leqslant st$ hence $R\leqslant s^2t^2+a^2b^2+2abst$.

Second step: Since $2abst\leqslant a^2s^2+b^2t^2$, $R\leqslant s^2t^2+a^2b^2+a^2s^2+b^2t^2=(s^2+a^2)(t^2+b^2)$.

Conclusion: Since $s^2+a^2=\sum\limits_{i=1}^{n+1}|a_i|^2$ and $t^2+b^2=\sum\limits_{i=1}^{n+1} |b_i|^2$, this is the desired inequality.


Edit Note that $s^2t^2+a^2b^2+2abst=(st+ab)^2=\langle\sigma,\tau\rangle^2$ where $\sigma=(s,a)$, $\tau=(t,b)$ and $\langle\cdot,\cdot\rangle$ is the canonical scalar product. Hence an alternative to the second step is to use again Cauchy-Schwarz inequality, which yields $R\leqslant\langle\sigma,\tau\rangle^2\leqslant\langle\sigma,\sigma\rangle\cdot\langle\tau,\tau\rangle=(s^2+a^2)(t^2+b^2)$.