Real Analysis – Does the Improper Integral sin(x)/x Converge or Diverge?

improper-integralsintegrationreal-analysis

Improper integral of $\sin(x)/x $ converges absolutely, conditionally or diverges?

We have
$$\int_1^{\infty}\frac{\sin x}{x}\text{d}x$$

Integrating by parts
$$u=\frac{1}{x}$$
$$\text{d}u=-\frac{1}{x^2}\text{d}x$$
$$\text{d}v=\sin x\;\text{d}x$$
$$v=-\cos x$$
$$
\begin{aligned}
\int_1^{\infty} \frac{\sin x}{x} \text{d}x
& = \frac{-\cos x}{x} \Big|_1^{\infty}
– \int_1^{\infty} \frac{\cos x}{x^2} \text{d}x \\
& = \cos 1 – \int_1^{\infty} \frac{\cos x}{x^2} \text{d}x
\end{aligned}
$$

$\int_1^{\infty} \frac{\cos x}{x^2} \text{d}x$ converges absolutely
(using the Comparison Test For Improper Integrals):

$$
\int_1^{\infty} \frac{|\cos x|}{x^2} \text{d}x <
\int_1^{\infty} \frac{1}{x^2} \text{d}x
$$

So $\int_1^{\infty} \frac{\sin x}{x} \text{d}x$
converges.

Now I need to find out if
$\int_1^{\infty} |\frac{\sin x}{x}| \text{d}x$
converges or diverges.

Best Answer

Let $N \in \Bbb N, N > 1$, we have:

\begin{align} \int_0^{2\pi N} \left|\frac{\sin x}{x}\right|\,dx &= \sum_{n=0}^{N-1} \int_{2\pi n}^{2\pi(n+1)} \left|\frac{\sin x}{x}\right|\,dx \\ &\ge \sum_{n=0}^{N-1} \frac{1}{2\pi (n+1)} \int_{2\pi n}^{2\pi(n+1)} \left|\sin x\right|\,dx \\ &= \sum_{n=0}^{N-1} \frac{1}{2\pi (n+1)} \int_{0}^{2\pi} \left|\sin x\right|\,dx \\ &= \sum_{n=0}^{N-1} \frac{2}{\pi (n+1)} \end{align}

The last sum diverges as $N \to \infty$, and so does the original integral.

Your integral is on $[1, \infty]$, but it also diverges because $\left|\frac{\sin{x}}{x}\right|$ is continuous on $[0, 1]$. My proof is on $[0, \infty]$ because it makes managing the summation slightly easier.

Related Question