[Math] If $\Sigma$ is a covariance matrix, how to obtain the decomposition $\Sigma = \Sigma^{1/2}(\Sigma^{1/2})^T$ from Cholesky Decompositon

linear algebramatricesmatrix decompositionstatistics

I read somewhere that if $\Sigma$ is a covariance matrix, one can obtain the decomposition $\Sigma = \Sigma^{1/2}(\Sigma^{1/2})^T$ from Cholesky Decompositon. However, I am confused how because Cholesky decomposition requires an upper and lower triangular matrix. How can the square root here for upper and lower triangular, or can it?

Best Answer

Since $\Sigma^{-1}$ is a positive definite matrix, there is a lower triangular, nonsingular matrix $C$ such that

$$C^T\Sigma^{-1}C = I$$

Hence, $$I = I^{-1} = (C^T\Sigma^{-1}C)^{-1} = C^{-1} \Sigma (C^T)^{-1} \\ \implies CC^T = CIC^T = CC^{-1} \Sigma (C^T)^{-1}C^T = \Sigma.$$

For example, for the $2 \times 2$ case,

$$\Sigma = \pmatrix{\sigma_1^2 & \rho\sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2} \\ \Sigma^{-1} = \frac{1}{1 - \rho^2}\pmatrix{\sigma_1^{-2} & -\rho\sigma_1^{-1} \sigma_2^{-1} \\ -\rho \sigma_1^{-1} \sigma_2^{-1} & \sigma_2^{-2}}.$$

$$C = \pmatrix{ \sigma_1 & 0 \\ \rho \sigma_2 & \sigma_2\sqrt{1-\rho^2}} .$$