[Math] If $P_n(1)=1$ calculate $P’_n(1)$ in Legendre polynomials

legendre polynomialsorthogonal-polynomials

$P_n(x)$ is in $[-1,1]$ and $P_n(1)=1$ .The problem is getting $P'_n(1)$.
On Wikipedia it says that it is $\frac{n(n+1)}2$.

I derive the problem showed here
How could I prove that $P_n (1)=1=-1$ for the Legendre polynomials?
in order to get P'(n) but it didn't helped so much.

Best Answer

The generating function for Legendre polynomials is \begin{eqnarray*} \sum_{n=0}^{\infty} P_n(z) h^n =\frac{1}{\sqrt{1-2hz+h^2}}. \end{eqnarray*} Differentiate this w.r.t $z$ \begin{eqnarray*} \sum_{n=0}^{\infty} P^{'}_n(z) h^n =\frac{(-1/2)(-2h)}{(1-2hz+h^2)^{3/2}}. \end{eqnarray*} Set $z=1$ \begin{eqnarray*} \sum_{n=0}^{\infty} \color{red}{P^{'}_n(1)} h^n =\frac{h}{(1-h)^{3}} =\sum_{n=0}^{\infty} \color{red}{\binom{n+1}{2}} h^n. \end{eqnarray*}