[Math] If $H$ and $K$ are abelian normal subgroups of a group that intersect trivially, then prove $HK$ is abelian.

abelian-groupsnormal-subgroupssolution-verification

Let $H$ and $K$ are two abelian normal subgroups of a group and $H\cap K=\{e\}$. Then prove that $HK$ is also abelian.

My proof:

Results: $HK$ is a subgroup of a group if and only if $HK=KH$.

Now let $h_1k_1, h_2k_2 \in HK$ where $h_1,h_2\in H$ and $k_1,k_2\in K$.

We need to show $(h_1k_1)(h_2k_2)=(h_2k_2)(h_1k_1).$

So $(h_1k_1)(h_2k_2)=h_1(k_1h_2)k_2….(*)$.

Now $k_1h_2\in KH=HK$, so $k_1h_2\in HK$, therefore $k_1\in H$.

Since $H$ is abelian so $k_1h_2=h_2k_1$

So from $(*),$ $(h_1k_1)(h_2k_2)=h_1(k_1h_2)k_2=(h_1h_2)(k_1k_2)=(h_2h_1)(k_2k_1)=h_2(h_1k_2)k_1=(h_2k_2)(h_1k_1)$

Hence $HK$ is abelian.

Is my proof correct? Thanks.

Best Answer

You say $k_1h_1\in KH=HK$ so $k_1h_1\in HK$ therefore $k_1\in H$, your argument implies that $K\subset H$ since $k_1$ maybe any element of $K$ and this is not always true.

This is a proof:

$h\in H, k\in K, [h,k]=hkh^{-1}k^{-1}=(hkh^{-1})k^{-1}$ since $K$ is normal $hkh^{-1}\in K$ and $[h,k]\in K, [h,k]=h(kh^{-1}k^{-1})$ since $H$ is normal, $kh^{-1}k^{-1}\in H$ and $[h,k]\in H$, we deduce that $[h,k]\in K\cap H=\{1\}$ and $kh=hk$.

$h_1,h_2\in H, k_1,k_2\in K, h_1k_1h_2k_2=h_1(k_1h_2)k_2$ since $k_1h_2=h_2k_1$ we deduce that $h_1k_1h_2k_2=h_1h_2k_1k_2$ Since $H$ and $K$ are commutative, we deduce that $h_1k_1h_2k_2=h_2h_1k_2k_1=h_2k_2h_1k_1$ since $h_1k_2=k_2h_1$.

Related Question