[Math] if $f(mn)+f(m+n-1)=f(m)f(n)$How find $f(n)$

functional-equationsfunctions

let $f:N^{+}\to Z$,and $f$ is monotonic nondecreasing,and such
$$f(m)f(n)=f(mn)+f(m+n-1),f(4)=5$$
Find all $f(n)$

My try: let $$m=2,n=2\Longrightarrow f^2(2)=f(4)+f(3)$$
$$m=1.n=4,f(1)f(4)=f(4)+f(4)\Longrightarrow f(1)=2$$
$$m=2,n=1,f(2)f(1)=f(2)+f(2)\Longrightarrow f(1)=2$$
$$n=1,m=m\Longrightarrow f(m)f(1)=f(m)+f(m)\Longrightarrow f(1)=2$$
$$m=2,n=3,f(2)f(3)=f(6)+f(4)$$
I can't find $f(2)$,

since $$2=f(1)\le f(2)\le f(3)\le f(4)=5$$,then we must
$$f(2)=3,f(3)=4$$.
but for $n\ge 6$,I can't find it.

and I found $$f(n)=n+1$$ is such it.because
$$f(m)f(n)=(m+1)(n+1)=(mn+1)+m+n=f(mn)+f(m+n-1)$$

But I can't prove it.

Thank you

Best Answer

HINT: You haven't used the monotonic nondecreasing condition yet.

You have $f(1)=2$ and $f(4)=5$ so $2\le f(2)\le f(3)\le 5$

If you have values up to $f(2n)$ you can use the approach you have for $f(6)$ to find $f(2n+2)$, and then use the monotonic property to find $f(2n+1)$.

Related Question