[Math] If any two chords be drawn through two points on the major axis of an ellipse equidistant from the center

conic sections

If any two chords be drawn through two points on the major axis of an ellipse equidistant from the center,show that $\tan\frac{\alpha}{2}\tan\frac{\beta}{2}\tan\frac{\gamma}{2}\tan\frac{\delta}{2}=1$,where $\alpha,\beta,\gamma,\delta$ are the eccentric angles of the extremities of the chords.

I tried to solve it.Let the chords cut the major axis at $(-d,0)$ and $(d,0)$.

The equation of the chords are $y=\frac{-b}{a}\cot\frac{\alpha+\beta}{2}(x+d)$ and $y=\frac{-b}{a}\cot\frac{\gamma+\delta}{2}(x-d)$

and then i stuck.What should i do to reach the answer.Please help.

Best Answer

The equation to the chord of the ellipse joining two points with eccentric angles $\alpha$ and $\beta$ is $\frac{x}{a}\cos \frac{\alpha+\beta}{2}+\frac{y}{b}\sin \frac{\alpha+\beta}{2}=\cos\frac{\alpha-\beta}{2}$

Similarly,The equation to the chord of the ellipse joining two points with eccentric angles $\gamma$ and $\delta$ is $\frac{x}{a}\cos \frac{\gamma+\delta}{2}+\frac{y}{b}\sin \frac{\gamma+\delta}{2}=\cos\frac{\gamma-\delta}{2}$

Since,first chord passes through $(d,0)$ and the second chord passes through $(-d,0)$.

$\frac{d}{a}\cos \frac{\alpha+\beta}{2}=\cos\frac{\alpha-\beta}{2}$ and

$\frac{-d}{a}\cos \frac{\gamma+\delta}{2}=\cos\frac{\gamma-\delta}{2}$

$\Rightarrow \frac{\cos\frac{\alpha-\beta}{2}}{\cos\frac{\alpha+\beta}{2}}=-\frac{\cos\frac{\gamma-\delta}{2}}{\cos\frac{\gamma+\delta}{2}}$

$\Rightarrow \frac{\cos\frac{\alpha}{2}\cos\frac{\beta}{2}+\sin\frac{\alpha}{2}\sin\frac{\beta}{2}}{\cos\frac{\alpha}{2}\cos\frac{\beta}{2}-\sin\frac{\alpha}{2}\sin\frac{\beta}{2}}=-\frac{\cos\frac{\gamma}{2}\cos\frac{\delta}{2}+\sin\frac{\gamma}{2}\sin\frac{\delta}{2}}{\cos\frac{\gamma}{2}\cos\frac{\delta}{2}-\sin\frac{\gamma}{2}\sin\frac{\delta}{2}}$

Now apply componendo and dividendo on both sides,we will get the answer.