[Math] If $a_{ij}=\max(i,j)$, calculate the determinant of $A$

determinantmatrices

If $A$ is an $n \times n$ real matrix and

$$a_{ij}=\max(i,j)$$

for $i,j = 1,2,\dots,n$, calculate the determinant of $A$.

So, we know that

$$A=\begin{pmatrix}
1 & 2 & 3 & \dots & n\\
2 & 2 & 3 & \dots & n\\
3 & 3 & 3 & \dots & n\\
\vdots & \vdots & \vdots & \ddots & \vdots\\
n& n & n & \dots & n
\end{pmatrix}$$

but what do I do after?

Best Answer

Let $d_n$ be the determinant of the $n\times n$ matrix

We can also write it as a recurrence

By expanding on the last row (or column) we observe that all but the minors of last two columns have linear dependent columns, so we have:

$d_n=-\frac{n^2}{n-1}d_{n-1}+nd_{n-1}=-\frac{n}{n-1}d_{n-1}$

Coupled with $d_1=1$ we get $d_n=(-1)^{n-1}n$

Related Question