[Math] How to solve inequalities which have absolute value inside absolute value

inequality

I know how to solve if I have something like this: $$|2x + 3| – |1 – x| \geq 3$$

But I don't know how to solve something like this: $$|x + |3x + 9|| \geq 3$$

Anyone can show me how to start solving this type of absolute value in inequalities?

Best Answer

One simple way: split it into cases.

$$|x+|3x+9||\geqslant 3$$

Case 1

If $x+|3x+9| \geqslant 0$ then $x+|3x+9|\geqslant 3$.

$$|3x+9| \geqslant -x \implies x\in(-\infty;-\tfrac92\rangle \cup \langle -\tfrac94;+\infty)=A$$ $$|3x+9|\geqslant 3 - x \implies x\in(-\infty;-6\rangle \cup \langle -\tfrac32;+\infty)=B$$ $$\Downarrow$$ $$x\in A\cap B=(-\infty;-6\rangle \cup \langle -\tfrac32;+\infty) = S_1$$ The set above contains the solutions from this case.

Case 2

If $x+|3x+9| < 0$ then $-x-|3x+9|\geqslant 3$.

$$|3x+9| < -x \implies x\in(-\tfrac92;-\tfrac94)=A$$ $$-x-|3x+9|\geqslant 3 \implies x\in\{-3\}=B$$ $$\Downarrow$$ $$x\in A\cap B=\{-3\}=S_2$$

Summary

$$x\in S_1\cup S_2=(-\infty;-6\rangle \cup \{-3\}\cup \langle -\tfrac32;+\infty)$$

Related Question