[Math] How to prove this generating function of Legendre polynomials

generating-functionsspecial functions

How to prove this generating function of Legendre polynomials?
$$\frac{1}{\sqrt{1-2xt+t^2}}=\sum_{n=0}^{\infty}P_n(x)t^n$$
I found 2 proofs and they are different from each other and I don't understand them.

Best Answer

$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ This is a very popular proof in Electromagnetism ( see, for example, Jackson book ): $\verts{\vec{r} - \vec{r}'}^{-1}$ satisfies the Laplace Equation when $\vec{r} \not= \vec{r}'$. It means $\verts{\vec{r} - \vec{r}'}^{-1}$ can be expanded in a serie of Legendre Polynomials: $$ \left.\nabla^{2}\pars{{1 \over \verts{\vec{r} - \vec{r}'}}} \right\vert_{\vec{r}\ \not=\ \vec{r}'} = 0 \quad\imp\quad{1 \over \verts{\vec{r} - \vec{r}'}} = \sum_{\ell = 0}^{\infty}A_{\ell}{\rm P}_{\ell}\pars{\cos\pars{\theta}} $$ where $\theta \equiv \angle\pars{\vec{r},\vec{r}'}$: $$ {1 \over \verts{\vec{r} - \vec{r}'}} = {1 \over r_{>}}\,{1 \over \root{1 - 2\pars{r_{<}/r_{>}}\cos\pars{\theta} + \pars{r_{<}/r_{>}}^{2}}}\,,\qquad r_{< \atop >} = {\min \atop \max}\braces{r,r'} $$ Set $r_{>} = 1$, $h \equiv r_{<}/r_{>}$ and $x = \cos\pars{\theta}$. We get $$ {1 \over \root{1 -2xh + h^{2}}} = \sum_{\ell = 0}^{\infty}A_{\ell}{\rm P}_{\ell}\pars{x} $$ With $x = 1$, $\pars{~{\rm P}_{\ell}\pars{1} = 1\,,\ \forall\ \ell = 0,1,2,\ldots~}$: $$ \sum_{\ell = 0}^{\infty}A_{\ell} = {1 \over 1 - h} = \sum_{\ell = 0}^{\infty}h^{\ell} $$

Related Question