Calculus – How to Integrate \int \frac{1}{\sin^4x + \cos^4 x} \,dx?

calculusindefinite-integralsintegrationreal-analysis

How to integrate
$$\int \frac{1}{\sin^4x + \cos^4 x} \,dx$$

I tried the following approach:
$$\int \frac{1}{\sin^4x + \cos^4 x} \,dx = \int \frac{1}{\sin^4x + (1-\sin^2x)^2} \,dx = \int \frac{1}{\sin^4x + 1- 2\sin^2x + \sin^4x} \,dx \\
= \frac{1}{2}\int \frac{1}{\sin^4x – \sin^2x + \frac{1}{2}} \,dx = \frac{1}{2}\int \frac{1}{(\sin^2x – \frac{1}{2})^2 + \frac{1}{4}} \,dx$$

The substitution $t = \tan\frac{x}{2}$ yields 4th degree polynomials and a $\sin$ substitution would produce polynomials and expressions with square roots while Wolfram Alpha's solution doesn't look that complicated. Another approach:
$\sin^4x + \cos^4 x = (\sin^2 x + \cos^2x)(\sin^2 x + \cos^2 x) – 2\sin^2 x\cos^2 x = 1 – 2\sin^2 x\cos^2 x = (1-\sqrt2\sin x \cos x)(1+\sqrt2\sin x \cos x)$
and then I tried substituting: $t = \sin x \cos x$ and got
$$\int\frac{t\,dt}{2(1-2t^2)\sqrt{1-4t^2}}$$

Another way would maybe be to make two integrals:
$$\int \frac{1}{\sin^4x + \cos^4 x} \,dx = \int \frac{1}{(1-\sqrt2\sin x \cos x)(1+\sqrt2\sin x \cos x)} \,dx = \\ \frac{1}{2}\int \frac{1}{1-\sqrt2\sin x \cos x} \,dx + \frac{1}{2}\int\frac{1}{1+\sqrt2\sin x \cos x} \,dx$$

… and again I tried $t = \tan\frac{x}{2}$ (4th degree polynomial) and $t=\sqrt2 \sin x \cos x$ and I get $\frac{\sqrt 2}{2} \int \frac{\,dt}{(1-t)\sqrt{1-2t^2}}$ for the first one.

Any hints?

Best Answer

Simplify the denominator in the following way: $$\sin^4x+\cos^4x=(\sin^2x+\cos^2x)^2-2\sin^2x\cos^2x=1-\frac{\sin^2(2x)}{2}=\frac{1+\cos^2(2x)}{2}=\frac{2+\tan^2(2x)}{2\sec^2(2x)}$$ Hence, the integral you are dealing with is: $$\int \frac{2\sec^2(2x)}{2+\tan^2(2x)}\,dx$$ I guess the next step is pretty obvious now. ;)