Integration – How to Integrate $\frac{1}{\sqrt{1+x^2}}$ Using Substitution

indefinite-integralsintegrationsubstitution

How you integrate $\frac{1}{\sqrt{1+x^2}}$ using following substitution? $1+x^2=t$ $\Rightarrow$ $x=\sqrt{t-1} \Rightarrow dx = \frac{dt}{2\sqrt{t-1}}dt$… Now I'm stuck. I don't know how to proceed using substitution rule.

Best Answer

By the substitution you suggested you get $$ \int \frac1{2\sqrt{t(t-1)}} \,dt= \int \frac1{\sqrt{4t^2-4t}} \,dt= \int \frac1{\sqrt{(2t-1)^2-1}} \,dt $$ Now the substitution $u=2t-1$ seems reasonable.


However your original integral can also be solved by $x=\sinh t$ and $dx=\cosh t\, dt$ which gives $$\int \frac{\cosh t}{\cosh t} \, dt = \int 1\, dt=t=\operatorname{arcsinh} x = \ln (x+\sqrt{x^2+1})+C,$$ since $\sqrt{1+x^2}=\sqrt{1+\sinh^2 t}=\cosh t$.

See hyperbolic functions and their inverses.

If you are familiar (=used to manipulate) with the hyperbolic functions then $x=a\sinh t$ is worth trying whenever you see the expression $\sqrt{a^2+x^2}$ in your integral ($a$ being an arbitrary constant).

Related Question