Number Theory – How to Find the LCM Sum Function $ \text{lcm}(1,n) +\text{lcm}(2,n) +\cdots+\text{lcm}(n,n)$

elementary-number-theory

Given an integer $n$, How do we find $$S=\text{lcm}(1,n) + \text{lcm}(2,n) +\ldots+ \text{lcm}(n,n)$$
I know how find the $\gcd$ sum $$\gcd(1,n) + \gcd(2,n) +\cdots+\gcd(n,n)$$
Because there is $$\sum{\phi(\frac{n}{i}) * i}$$ where $i|n$. But how do I use it to calculate $\text {lcm}$ ?

I found a formula googling here . But there is no proof there, and the research paper journal is unreadable for me (i.e I can't understand the hard mathy notations). So it would be helpful if someone could explain how this formula came.

Best Answer

Lemma 1: $\operatorname{lcm}(a, n) + \operatorname{lcm} (n-a, n) = \frac{ an } { \gcd(a, n)} + \frac{ (n-a)n} { \gcd(n-a, n)} = \frac{ n\times n} { \gcd(a,n) }$.

Lemma 2: $\sum \frac{n}{\gcd(a,n)} = \sum_{f \mid n} \frac{n}{f} \times \phi(\frac{n}{f} ) = \sum_{d\mid n} d\phi(d)$,

Proof: consider what happens if $ \gcd(a,n) = f \mid n$. It appears $\phi(\frac{n}{f})$ times on the LHS, and each time it has value of $ \frac{n}{f}$. Now substitute $ d = \frac{n}{f}$, which is also a divisor of $n$.

Now, to your problem, pull out $\operatorname{lcm}(n,n) = n$.

We have $ 2 \sum_{a=1}^{n-1} \operatorname{lcm}(a,n) = \sum \left[\operatorname{lcm}(a,n) + \operatorname{lcm} (n-a, n) \right] = n \sum \frac{n}{\gcd(a,n)} = n \times \sum_{d\mid n} d\phi(d).$

Add back $\operatorname{lcm}(n,n)=n$, and you get the formula in OEIS.

Related Question