[Math] How to find the limit of recursive sequence

calculussequences-and-series

Suppose $a_0 = 0$, $a_1 = 1$, and
$$ a_{n+1} = a_n+2 a_{n-1}$$
if $n \ge 1$.
Find
$$\lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n}$$

Usually, what's the approach we use for recursive sequence like this?
I know another type of recursive question with no fraction involved,
but don't know how to do the type with fraction….

Best Answer

Here’s a completely different approach. Divide the recurrence by $a_n$ to get

$$\frac{a_{n+1}}{a_n}=1+\frac{2a_{n-1}}{a_n}=1+\frac2{a_n/a_{n-1}}\;.\tag{1}$$

If we set $b_n=\dfrac{a_{n+1}}{a_n}$, we can rewrite $(1)$ as $$b_n=1+\frac2{b_{n-1}}\;.\tag{2}$$

Since $a_0=0$ and $a_1=1$, we can’t define $b_0$, but $a_2=a_1+2a_0=1$, so $b_1=\dfrac11=1$. Then $b_2=3$, $b_3=\frac53$, $b_4=\frac{11}5$, $b_5=\frac{21}{11}$, $b_6=\frac{43}{21}$, and $b_7=\frac{85}{43}$. This is enough to show a clear pattern: if $b_n=\frac{c_n}{d_n}$ in lowest terms, it appears that

$$c_{n+1}=2c_n+(-1)^{n+1}\tag{3}$$

and

$$d_{n+1}=c_n\;,\tag{4}$$

so that $$b_{n+1}=\frac{c_{n+1}}{d_{n+1}}=\frac{2c_n+(-1)^{n+1}}{c_n}=2-\frac{(-1)^n}{c_n}\;.\tag{5}$$

It’s not too hard to use $(2)$ to prove $(3)$ and $(4)$ by induction on $n$. $(3)$ and the fact that $c_1=1$ imply that $\langle c_n:n\in\Bbb Z^+\rangle$ is a strictly increasing sequence of positive integers, and $(5)$ then allows us to calculate $\lim\limits_{n\to\infty}b_n$ very easily.

Related Question