How to Find Derivative of $\sin\sqrt{x}$ Using Difference Quotient

calculusderivativeslimitslimits-without-lhopital

The definition of derivative of a function $f(x)$ is $$\lim_{h\to0} \frac{f(x+h)-f(x)}{h}$$

Using this definition, the derivative of $\sin\sqrt{x}$ will be:

$$\lim_{h\to0} \frac{\sin\sqrt{x+h}-\sin\sqrt{x}}{h}$$

$$\lim_{h\to 0} \frac{\cos\left(\frac{\sqrt{x+h}+\sqrt{x}}{2}\right)\sin\left(\frac{\sqrt{x+h}-\sqrt{x}}{2}\right)}{h}$$

Now i got stuck. How to find the limit or simplify this expression?

I get intuition that we have to use $$\lim_{x\to0}\frac{\sin x}{x} = 1$$

but that too is leading no where. I am unable to remove h from denominator.

NOTE

I know the derivative of $\sin\sqrt{x}$ is $\frac{\cos\sqrt{x}}{2\sqrt{x}}$ using chain rule, but this exercise was given to us for practice using division quotient.

Best Answer

$$\lim_{h\to 0}\frac{\sin\sqrt{x+h}-\sin\sqrt x}{h}=\lim_{h\to 0}\frac{\sin\sqrt{x+h}-\sin\sqrt x}{\sqrt{x+h}-\sqrt x}\cdot \frac{\sqrt{x+h}-\sqrt x}{h}$$ $$\underset{u=\sqrt{x+h}}{=}\underbrace{\lim_{u\to \sqrt x}\frac{\sin(u)-\sin(\sqrt x)}{u-\sqrt x}}_{=\cos(\sqrt x)}\cdot \underbrace{\lim_{h\to 0}\frac{\sqrt{x+h}-\sqrt x}{h}}_{=\frac{1}{2\sqrt x}}=\frac{\cos(\sqrt x)}{2\sqrt x}.$$