[Math] How to evaluate this line integral directly

calculusline-integralsmultivariable-calculusvectors

Let $P = (x-1)y^{2}$ and $Q = (y+1)x^{2}$
How can I evaluate $\oint_C Pdx + Qdy$ without simplifying using Green's theorem.

Counterclockwise around the triangle defined by the points:
$(0,0) (0,1) (\frac{1}{2}, 0)$

How could I reduce the integral to either in only dx or dy, and is that even necessary?

Thanks very much in advance

Best Answer

Line from $\;(0,0)\to (0,1)\;$ :

$$\ell_1:\;t(0,1)+(1-t)(0,0)=(0,t)\;,\;\;t\in [0,1]\implies$$

$$\int_{\ell_1}Pdx+Qdy=\int_0^1\left((-1)t^2(0\cdot )+(t+1)0^2\right)dt=0$$$${}$$

Line from $\;(0,1)\to \left(\frac12,0\right)\;$ :

$$\ell_2:\;t\left(\frac12,0\right)+(1-t)(0,1)=\left(\frac t2,1-t\right)\;,\;\;t\in [0,1]\implies$$

$$\int_{\ell_2}Pdx+Qdy=\int_0^1\left(\left(\frac t2-1\right)(1-t)^2\cdot\frac12dt+(2-t)\frac{t^2}4(-dt)\right)=$$

$$=\frac14\int_0^1(t-2)(t-1)^2dt+\frac14\int_0^1(t^3-2t^2)dt=\frac14\int_0^1\left(2t^3-6t^2+5t-2\right)dt=$$$${}$$

$$=\frac14\left(\frac12-2+\frac52-2\right)=-\frac14$$

Line from $\;\left(\frac12,0\right)\to (0,0)\;$ :

$$\ell_3:\;t(0,0)+(1-t)\left(\frac12,0\right)=\left(\frac12(1-t),0\right)\;,\;\;t\in [0,1]\implies$$

$$\int_{\ell_3}Pdx+Qdy=\int_0^1\left(-\frac12-t\right)\left(-\frac12\right)+\left(1)0^2\right)dt=\int_0^1\left(\frac14+\frac t2\right)dt=$$

$$=\frac14+\frac14=\frac12$$

so the line integral equals $\;-\cfrac14+\cfrac12=\cfrac14\;$

Using Green's theorem:

$$\frac{\partial Q}{\partial x}=2x(y+1)\;,\;\;\frac{\partial P}{\partial y}=2(x-1)y\implies\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=2(x+y)$$

and the integral becomes on the given region:

$$\int_0^{1/2}\int_0^{-2x+1}2(x+y)dydx=\int_0^{1/2}\left(2x(-2x+1)+(2x-1)^2\right)dx=$$

$$=\int_0^{1/2}(-2x+1)dx=-\frac14+\frac12=\frac14$$

Related Question