[Math] How to evaluate the definite integral by the limit definition $\int_{-1}^1 x^3 dx$

calculusdefinite integralsintegrationlimits

Solve the definite integral by the limit definition:

$$\int_{-1}^1 x^3 dx$$

The formula:

$$\int_a^bf(x)dx= \lim_{n\rightarrow \infty} \sum_{i=1}^n f(c_i)\Delta x_i$$

Get the variables:

$$\Delta x_i : \frac{b-a}{n} = \frac{1-(-1)}{n} = \frac{2}{n}$$

$$f(c_i) : a + i(\Delta x_i) = \left(-1+\frac{2i}{n}\right)$$

Now plug them into the formula I get:

$$\lim_{n\rightarrow \infty} \sum_{i=1}^n \left(-1+\frac{2i}{n}\right)^3\left(\frac{2}{n}\right)$$

Take out the delta and distribute the cube:

$$\lim_{n\rightarrow \infty} \left(\frac{2}{n}\right) \sum_{i=1}^n \left(-1+\frac{2i}{n}\right)^3 = \lim_{n\rightarrow \infty} \left(\frac{2}{n}\right) \sum_{i=1}^n \left(-1+\frac{8i^3}{n^3}\right) $$

Expand the summation and take out constants, and properties of Simga:

$$\lim_{n\rightarrow \infty} \left(\frac{2}{n}\right) \left[- \sum_{i=1}^n 1+ \frac{8}{n^3} \sum_{i=1}^n i^3\right] = \lim_{n\rightarrow \infty} \left(\frac{2}{n}\right) \left[-n + \frac{8}{n^3}\left( \frac{n^2(n+1)^2}{4}\right)\right]$$

Distribute the $\frac{2}{n}$ and simplify:

$$\lim_{n\rightarrow \infty}\left[-2 + \frac{16}{n^4}\left( \frac{n^2(n+1)^2}{4}\right)\right] = \lim_{n\rightarrow \infty}\left[-2 + \frac{4}{n^2}\left( \frac{n^2+2n+1}{1}\right)\right]$$

Distribute and simplify/cancel:

$$\lim_{n\rightarrow \infty}\left[-2 + \frac{4n^2}{n^2} + \frac{8n}{n^2} + \frac{4}{n^4}\right] = \lim_{n\rightarrow \infty}\left[-2 + 4 + \frac{8}{n} + \frac{4}{n^4}\right] $$

I keep getting the limit is -2 (-2+4), but the book says it's 0. Where did I go wrong?

Best Answer

You made an "algebra capital sin" when you wrote $$ \left(-1+\frac{2i}n\right)^3=-1+\frac{8i^3}{n^3}. $$