Calculus – How to Evaluate ??²? e^cos(?) cos(sin(?)) d??

calculusdefinite integralsintegrationreal-analysis

For $\alpha \in \mathbb{R}$, define $\displaystyle I(\alpha):=\int_{0}^{2\pi}e^{\alpha \cos \theta}\cos(\alpha \sin \theta)\; d\theta$. Calculate $I(0)$. Hence evaluate $\displaystyle\int_{0}^{2\pi}e^{\cos \theta}\cos( \sin \theta)\; d\theta$.

Hint: To evaluate the integral that expresses $\displaystyle\frac{dI}{d\alpha}$, consider $\displaystyle\frac{\partial}{\partial \theta}(e^{\alpha \cos \theta}\sin(\alpha \sin \theta))$.

How do I do this question? I think this might have something to do with the Fundamental Theorem of Calculus, but I'm not sure.

I computed $\displaystyle I(0)=\int_{0}^{2\pi} d\theta=2 \pi$, and $\displaystyle I(1)=\int_{0}^{2\pi}e^{\cos \theta}\cos( \sin \theta) d\theta$. Following the hint I get

$$\begin{align}
\frac{\partial}{\partial \theta}(e^{\alpha \cos \theta}\sin(\alpha \sin \theta)) & =\alpha e^{\alpha \cos \theta} \sin (\alpha \sin \theta) + e^{\alpha \cos \theta}\cos(\alpha \sin \theta) \alpha \cos \theta \\
& = \alpha e^{\alpha \cos \theta} \sin (\alpha \sin \theta) + \frac{dI}{d \alpha} \cos \theta. \\
\end{align}$$

Is this correct so far?

The answers in the question referred as a duplicate does not help. I'm in a course dealing with real values, not complex.

Best Answer

First a correction:

$$\begin{align} \frac{\partial}{\partial \theta}(e^{\alpha \cos \theta}\sin(\alpha \sin \theta)) & =-\alpha \sin \theta \, e^{\alpha \cos \theta} \sin (\alpha \sin \theta) + e^{\alpha \cos \theta}\cos(\alpha \sin \theta) \alpha \cos \theta \\ \end{align}$$

Now \begin{align} \frac{dI}{d\alpha}&=\frac{d}{d\alpha}\int_{0}^{2\pi}e^{\alpha \cos \theta}\cos(\alpha \sin \theta) d\theta \\ &=\int_{0}^{2\pi}\frac{d}{d\alpha}(e^{\alpha \cos \theta}\cos(\alpha \sin \theta)) d\theta \\ &=\int_{0}^{2\pi}\cos \theta \, e^{\alpha \cos \theta}\cos(\alpha \sin \theta)- e^{\alpha \cos \theta}\sin(\alpha \sin \theta)\sin \theta \, d\theta \\ &=\int_{0}^{2\pi}\frac{1}{\alpha} \frac{\partial}{\partial \theta}(e^{\alpha \cos \theta}\sin(\alpha \sin \theta)) d\theta \\ &=\frac{1}{\alpha} \Big[e^{\alpha \cos \theta}\sin(\alpha \sin \theta)\Big]_0^{2\pi} \\ &=0 \end{align}

So $I(\alpha)$ is actually constant.

So $I(1)=I(0)=2\pi$

So the answer is $2\pi$