Integration – How to Evaluate Integral of x^2 ln(1-x^4)/(1+x^4)dx

definite integralsintegrationsequences-and-series

How to evaluate

$$ \int_{0}^{1} \frac{x^2 \ln(1-x^4)}{1+x^4} \,dx \approx -0.162858 \tag{1}$$

The integral arises in the computation of

$$\left( \sum_{n=1}^{\infty} \frac{(-1)^n}{n}\right)\left(\sum_{n=1}^{\infty} \frac{(-1)^n}{4n-1}\right)$$
as

$$ \scriptsize{\frac{\pi \ln(2)}{4\sqrt{2}} + \frac{\ln(2) \ln(3-2\sqrt{2})}{4\sqrt{2}} -3\ln(2) + \frac{\pi}{2}= \int_{0}^{1} \frac{x^2 \ln(1-x^4)}{1+x^4} \,dx + \int_{0}^{1} \frac{x^{1/4}}{2(1+x)}\left(\tan^{-1}(x^{1/4}) – \tanh^{-1}(x^{1/4}) \right)}dx $$

A similar Integral

$$ \int_{0}^{1}\left( \frac{x^2 \ln(2)}{x^4-1} – \frac{x^2 \ln(1+x^4)}{x^4-1}\right)dx = C-\frac{\pi^2}{16}+\frac{\ln^2(\sqrt{2}-1)}{4}+\frac{\pi \ln (\sqrt{2}-1)}{4} \tag{2} $$

Where $ C $ = Catalan Constant

Unfortunately the same techniques I used to evaluate $(2)$ have not worked for $(1)$.
I know only for integration – By parts, U-Sub, and using Taylor Series as well as Mathematica.

Q = Is there a closed form for Integral $(1)$?

EDIT

$$ (1) = \frac{-\pi^2}{8\sqrt{2}} + \frac{\pi \ln(8)}{4\sqrt{2}} +\frac{\ln(8) \ln(3-2\sqrt{2})}{4\sqrt{2}} -\frac{\pi \ln(3-2\sqrt{2})}{8\sqrt{2}} + 4\sum_{k=1}^{\infty} \frac{(-1)^k}{4k-1}\sum_{n=1}^{k} \frac{1}{4n-1} $$

$$\sum_{k=1}^{\infty} \frac{(-1)^k}{4k-1}\sum_{n=1}^{k} \frac{1}{4n-1} = \frac{1}{64}\left(\psi^{(1)}\left(\frac{7}{8}\right)-\psi^{(1)}\left(\frac{3}{8}\right)\right) + W $$

Where $W$ is some value.

Best Answer

$$I=\int_0^1 \frac{x^2\ln(1-x^4)}{1+x^4}dx=\frac{5\pi^2}{48\sqrt 2}+\frac{\pi\ln 2}{4\sqrt 2}+\frac{\pi\ln(\delta_S)}{2\sqrt 2}+\frac{\ln^2(\delta_S)}{2\sqrt 2}-\frac{\ln 2 \ln(\delta_S)}{2\sqrt 2 }$$ $$+\frac{3\operatorname{Li}_2\left(-(\delta_S)^2\right)}{8\sqrt 2}-\frac{3\operatorname{Li}_2\left(-1/(\delta_S)^2\right)}{8\sqrt 2}+\frac{\operatorname{Li}_2\left(1/(\delta_S)^4\right)}{8\sqrt 2}+\frac{\operatorname{Ti}_2\left(-\delta_S\right)}{\sqrt 2}-\frac{\operatorname{Ti}_2\left(1/\delta_S\right)}{\sqrt 2}$$ Where $\delta_S=1+\sqrt 2\, $ is the silver ratio, $\operatorname{Li}_2(x)$ is the dilogarithm and $\operatorname{Ti}_{2}(x)$ is the inverse tangent integral.


To obtain this closed form we'll start by moving the bounds from $(0,1)$ to $(0,\infty)$. That's simply because afterwards the plan is to differentiate under the integral sign and usually having the bounds as $(0,\infty)$ simplifies the final result a lot when dealing with rational functions. $$I=\frac12\int_{-1}^1\frac{x^2\ln(1-x^4)}{1+x^4}dx\overset{x\to\frac{1-x}{1+x}}=\frac12\int_0^\infty \frac{(1-x)^2}{1+6x^2+x^4}\ln\left(\frac{8x(1+x^2)}{(1+x)^4}\right)dx$$ $$=\frac{3\pi \ln 2}{4\sqrt 2}-\frac{3\ln 2\ln(1+\sqrt 2)}{2\sqrt 2}+\frac12X-2Y$$ $$X=\int_0^\infty \frac{(1-x)^2\ln\left(1+x^2\right)}{1+6x^2+x^4}dx;\quad Y=\int_0^\infty \frac{(1-x)^2\ln\left(1+x\right)}{1+6x^2+x^4}dx$$ Also one integral from above vanished via the substitution $x\to \frac{1}{x}$: $$\int_0^\infty \frac{(1-x)^2\ln x}{1+6x^2+x^4}dx=0$$ As mentioned above, to evaluate $X$ and $Y$ we'll start by differentiating under the integral sign and even though the rational functions from above are somewhat more complicated than if we kept the original ones, we expect to have an easier time when integrating back.


$$X(a)=\int_0^\infty\frac{(1-x)^2\ln\left(1+ax^2\right)}{1+6x^2+x^4}dx\Rightarrow X'(a)=\int_0^\infty \frac{(1-x)^2x^2}{(1+6x^2+x^4)(1+ax^2)}dx$$ $$=\frac{2}{1-6a+a^2}\int_0^\infty\left(\frac{ax}{1+ax^2}-\frac{ax+x^3}{1+6x^2+x^4}\right)dx$$ $$+\frac{1-a}{1-6a+a^2}\int_0^\infty\frac{1}{1+ax^2}dx-\frac{1}{1-6a+a^2}\int_0^\infty\frac{1-a-(a-5)x^2}{1+6x^2+x^4}dx$$ $$=\frac{\ln a}{1-6a+a^2}-\frac{\ln(1+\sqrt 2)}{\sqrt 2}\frac{a-3}{1-6a+a^2}+\frac{\pi}{2\sqrt a}\frac{1-a}{1-6a+a^2}+\frac{\pi}{2\sqrt 2}\frac{a-3}{1-6a+a^2}$$ $$\Rightarrow X=\int_0^1\left(\frac{\ln a}{1-6a+a^2}-\frac{\ln(1+\sqrt 2)}{\sqrt 2}\frac{a-3}{1-6a+a^2}\right)da+\frac{\pi\ln 2}{2\sqrt 2}+\frac{\pi\ln (1+\sqrt 2)}{2\sqrt 2}$$


$$Y(a)=\int_0^\infty\frac{(1-x)^2\ln\left(1+ax\right)}{1+6x^2+x^4}dx\Rightarrow Y'(a)=\int_0^\infty \frac{(1-x)^2x}{(1+6x^2+x^4)(1+ax)}dx$$ $$=\int_0^\infty\left(\frac{(1+5a^2-2a^3)x+(1+a)^2x^3}{(1+6a^2+a^4)(1+6x^2+x^4)}-\frac{a(1+a)^2}{(1+6a^2+a^4)(1+ax)}\right)dx$$ $$+\int_0^\infty \left(\frac{a(1+a)^2-(2-5a-a^3)x^2}{(1+6a^2+a^4)(1+6x^2+x^4)}\right)dx$$ $$=-\frac{(1+a)^2\ln a}{1+6a^2+a^4}-\frac{a(3-a+a^2)+1}{1+6a^2+a^4}\frac{\ln(1+\sqrt 2)}{\sqrt 2}+\frac{\pi}{2\sqrt 2}\frac{a(3+a+a^2)-1}{1+6a^2+a^4}$$ $$\Rightarrow Y=-\int_0^1\frac{(1+a)^2\ln a}{1+6a^2+a^4}da-\frac{\pi\ln(1+\sqrt 2)}{8\sqrt 2}-\frac{3\ln 2\ln(1+\sqrt 2)}{4\sqrt 2}-\frac{\pi^2}{16\sqrt 2}+\frac{3\pi\ln 2}{8\sqrt 2}$$


Let's reorder things a little, just to see what we have so far (combining with the $X$ and $Y$ integrals): $$I=\frac{\pi^2}{8\sqrt 2}+\frac{\pi\ln 2}{4\sqrt 2}+\frac{\pi\ln(1+\sqrt 2)}{2\sqrt 2}+2\int_0^1\frac{(1+x)^2\ln x}{1+6x^2+x^4}dx$$ $$+\frac12\int_0^1\left(\frac{\ln x}{1-6x+x^2}+\frac{\ln(1+\sqrt 2)}{\sqrt 2}\frac{3-x}{1-6x+x^2}\right)dx$$

So all that's left is to evaluate the remaining two integrals. For the first one we have:

$$\int_0^1\frac{(1+x)^2\ln x}{1+6x^2+x^4}dx=\int_0^1\left(\frac{1}{2\sqrt 2}\frac{(1+\sqrt 2)-x}{(1+\sqrt 2)^2+x^2}-\frac{1}{2\sqrt 2}\frac{(1-\sqrt 2)-x}{(1-\sqrt 2)^2+x^2}\right)\ln x \, dx$$ $$\small =\frac{1}{8\sqrt 2}\left(\operatorname{Li}_2\left(-(1+\sqrt 2)^2\right)-\operatorname{Li}_2\left(-(1-\sqrt 2)^2\right)\right)+\frac{1}{2\sqrt 2}\left(\operatorname{Ti}_2\left(-(1+\sqrt 2)\right)-\operatorname{Ti}_2\left(-(1-\sqrt 2)\right)\right)$$ The result from above follows using: $$\int_0^1 \frac{x\ln x}{a^2+x^2}dx\overset{x^2\to x}=\frac14\int_0^1 \frac{\ln x}{a^2+x}dx=\frac14\operatorname{Li}_2\left(-\frac{1}{a^2}\right)$$ $$\int_0^1 \frac{a\ln x}{a^2+x^2}dx\overset{x\to ax}=\int_0^\frac1a\frac{\ln a +\ln x}{1+x^2}dx\overset{IBP}=-\operatorname{Ti}_2\left(\frac1a\right)$$


The second one is a little troublesome since we must keep the terms togheter to avoid divergence issues. So we'll do a couple substitutions first: $$\int_0^1\left(\frac{\ln x}{1-6x+x^2}+\frac{\ln(1+\sqrt 2)}{\sqrt 2}\frac{3-x}{1-6x+x^2}\right)dx$$ $$\overset{x\to\frac{1-x}{1+x}}=\int_0^1\left(\frac12\frac{1}{2x^2-1}\ln\left(\frac{1-x}{1+x}\right)+\frac{\ln(1+\sqrt 2)}{\sqrt 2}\left(\frac{2x}{2x^2-1}-\frac{1}{x+1}\right)\right)dx$$ $$=-\frac{\ln 2\ln(1+\sqrt 2)}{\sqrt 2}+\int_0^1\left(\frac12\frac{1}{2x^2-1}\ln\left(\frac{1-x}{1+x}\right)+\frac{\ln(1+\sqrt 2)}{\sqrt 2}\frac{2x}{2x^2-1}\right)dx$$ $$\overset{\sqrt 2 x\to x}=-\frac{\ln 2\ln(1+\sqrt 2)}{\sqrt 2}-\frac{1}{\sqrt 2}\int_0^\sqrt 2\left(\frac12\frac{1}{1-x^2}\ln\left(\frac{\sqrt 2 -x}{\sqrt 2 + x}\right)+\frac{x}{1-x^2}\ln(1+\sqrt 2)\right)$$ $$\overset{x\to\frac{1-x}{1+x}}=\frac{\ln^2(1+\sqrt 2)}{\sqrt 2}-\frac{\ln 2 \ln(1+\sqrt 2)}{\sqrt 2 }-\frac{1}{4\sqrt 2}\int_{-(1-\sqrt 2)^2}^1\ln\left(\frac{1+(1+\sqrt 2)^2x}{1+\frac{x}{(1+\sqrt 2)^2}}\right)\frac{dx}{x}$$ $$\scriptsize{=\frac{\ln^2(1+\sqrt 2)}{\sqrt 2}-\frac{\ln 2 \ln(1+\sqrt 2)}{\sqrt 2 }-\frac{1}{4\sqrt 2}\left(\frac{\pi^2}{6}-\operatorname{Li}_2\left(-(1+\sqrt 2)^2\right)+\operatorname{Li}_2\left(-(1-\sqrt 2)^2\right)-\operatorname{Li}_2\left((1-\sqrt 2)^4\right)\right)}$$ The last integral was split into two and the result follows by using the definition of the dilogarithm.
Finally putting everything togheter gives the announced closed form.