How to Determine the Arc Length of an Ellipse – Geometry Guide

circlesconic sectionsdifferential-geometrygeometry

I want to determine the length of an arc from the ellipse in the picture below:

enter image description here

How can I determine the length of $d$?

Best Answer

Let $a=3.05,\ b=2.23.$ Then a parametric equation for the ellipse is $x=a\cos t,\ y=b \sin t.$ When $t=0$ the point is at $(a,0)=(3.05,0)$, the starting point of the arc on the ellipse whose length you seek. Now it's important to realize that the parameter $t$ is not the central angle, so you need to get the value of $t$ which corresponds to the top end of your arc. At that end you have $y/x=\tan 50$ (degrees). And in terms of $t$ you have $y/x=(b/a)\tan t$. Solving for $t$ then gives $$t=t_1=\arctan \left( \frac{a}{b}\tan 50 \right).$$

[note I'd suggest using radians here, replacing the $50$ by $5\pi/18.$]

For the arclength use the general formula of integrating $\sqrt{x'^2+y'^2}$ for $t$ in the desired range. In your case $x'=-a \sin t,\ y'=b \cos t$, so that you are integrating $$\sqrt{a^2 \sin^2t+b^2 \cos^2t}$$ with respect to $t$ from $0$ to the above $t_1$. There not being a simple closed form for the antiderivative (it's an "elliptic integral), the simplest approach now would be to do the integral numerically. This seems the more appropriate in your problem as you only know $a,b$ to two decimals, apparently.

* When I did this numerically on maple I got about $2.531419$ for the arclength.