[Math] How to derive the Rotation Matrix from the Euler Formula

matricesrotations

I'm trying to understand how the two dimensional rotation matrix (i.e. $R \in \mathbb{R}^2$) can be derived from the Euler Formula ($e^{i\theta} = \cos \theta + i \sin \theta$). $R$ is given as:

$$
R(\theta) =
\begin{bmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta
\end{bmatrix}
$$

$$
\begin{bmatrix}
x' \\
y'
\end{bmatrix} =
\begin{bmatrix}
\cos\theta & -\sin\theta\\
\sin\theta & \cos\theta
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}
$$
$$
x' = x \cos \theta – y \sin \theta
$$
$$
y' = x \sin \theta + y \cos \theta
$$

My questions are:

  • Why can be $i$ omitted from the rotation matrix? (I tried to look for explanations 1,2 but none of these explanations goes beyond that $i$ is omitted)
  • Why can we derive a rotation matrix for $\mathbb{R}^2$ from a form that is defined in $\mathbb{C}^2$? How comes we don't get complex numbers as a result after some rotations?

Best Answer

The complex number $a+bi$ can be represented by the matrix $\displaystyle \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.

Note that $(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i$ and

$$ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \pm\begin{pmatrix} c & -d \\ d & c \end{pmatrix}=\begin{pmatrix} a\pm c & -(b\pm d) \\ b\pm d & a\pm c \end{pmatrix}$$

Also we have $(a+bi)(c+di)=(ac-bd)+(ad+bc)i$ and

$$ \begin{pmatrix} a & -b \\ b & a \end{pmatrix}\begin{pmatrix} c & -d \\ d & c \end{pmatrix}=\begin{pmatrix} ac-bd & -(ad+bc) \\ ad+bc & ac-bd \end{pmatrix}$$

Related Question