[Math] How to Compute the Laplace Transforms of Summation

laplace transformreal-analysis

Compute the Laplace Transforms of th following three unrelated functions:

$f_1(t)=\sum_{n=0}^\infty (-1)^n u(t-n)$

where $u(t-n)$ is the usual step function

$f_2(t)=\sum_{n=0}^\infty u(t-n)$

$f_3(t)=t – \left\lfloor t \right\rfloor$

where $t>0$ and $\left\lfloor t \right\rfloor$ is the floor function of $t$ and $u(t-n)$ is the usual step function.

I assume that I would just have to evaluate the sums and then take the Laplace Transform as usual, right? But if that were the case, wouldn't the two sums just converge to zero?

Best Answer

Since $f_1(t)\leqslant u(t)$ for all $t$ and $$\int_0^\infty |e^{-st}u(t)|\ \mathsf dt = \frac1s<\infty $$ for $s>0$, dominated convergence yields \begin{align} \mathcal L(f_1(t)) &= \int_0^\infty \left(e^{-st}\sum_{n=0}^\infty (-1)^n u(t-n)\right) \mathsf dt\\ &= \sum_{n=0}^\infty (-1)^n\int_n^\infty e^{-st}\ \mathsf dt\\ &= \sum_{n=0}^\infty (-1)^n \frac{e^{-ns}}s\\ &= \frac1s \sum_{n=0}^\infty (-e^{-s})^n\\ &= \frac1{s(1+e^{-s})}. \end{align} Since $f_2(t)\leqslant t$ for all $t$ and $$ \int_0^\infty |e^{-st}t|\ \mathsf dt = \frac1{s^2} $$ for $s>0$, dominated convergence yields \begin{align} \mathcal L(f_2(t)) &= \int_0^\infty \left(e^{-st}\sum_{n=0}^\infty u(t-n) \right)\mathsf dt\\ &= \sum_{n=0}^\infty \int_n^\infty e^{-st}\ \mathsf dt\\ &= \sum_{n=0}^\infty \frac{e^{-ns}}s\\ &= \frac1{s(1-e^{-s})}. \end{align} Since $f_3(T)\leqslant u(t)$ for all $t$ and $t\mapsto e^{-st}$ is integrable, by dominated convergence we have \begin{align} \mathcal L(f_3(t)) &= \int_0^\infty \left(e^{-st}\sum_{n=0}^\infty (t-n)(u(t-n)-u(t-n+1) \right)\mathsf dt\\ &= \sum_{n=0}^\infty \int_n^{n+1}e^{-st}(t-n)\ \mathsf dt\\ &= \sum_{n=0}^\infty \frac{\left(e^s-1-s\right) e^{-(n+1) s}}{s^2}\\ &= \frac{(e^s-1-s)e^{-s}}{s^2}\sum_{n=0}^\infty (e^{-s})^n\\ &= \frac{(e^s-1-s)e^{-s}}{s^2}\cdot \frac1{1-e^{-s}}\\ &= \frac{1+s-e^s}{s^2\left(1-e^s\right) }. \end{align}