[Math] How to compute determinant of $n$ dimensional matrix

determinantlaplace-expansionmatrices

I have this example:
$$\left|\begin{matrix}
-1 & 2 & 2 & \cdots & 2\\
2 & -1 & 2 & \cdots & 2\\
\vdots & \vdots & \ddots & \ddots & \vdots\\
2 & 2 & 2 & \cdots & -1\end{matrix}\right|$$

When first row is multiplied by $2$ and added to second, to $nth$ row, determinant is:
$$\left|\begin{matrix}
-1 & 2 & 2 & \cdots & 2\\
0 & 3 & 6 & \cdots & 6\\
\vdots & \vdots & \ddots & \ddots & \vdots\\
0 & 6 & 6 & \cdots & 3\end{matrix}\right|$$

Now using laplace expansion on first column:
$$-\left|\begin{matrix}
3 & 6 & \cdots & 6\\
\vdots & \vdots & \ddots & \vdots \\
6 & 6 & \cdots & 3\end{matrix}\right|$$

Is it possible to get recursive relation?
What to do next?

Thanks for replies.

Best Answer

Hint: the matrix $M = e e^T$ (where $e$ is a column vector consisting of $n$ $1$'s) satisfies $M^2 = n M$, so its eigenvalues are ...