Proof Writing – How to Attack ‘If True, Prove It; If Not True, Give a Counterexample’ Question

problem solvingproof-writingsoft-question

I am taking a basic analysis course. This is a general question that I often encounter in weekly homework. How should we start to attack this type of question: if the statement is true, prove it; if not true, give a counterexample? Yesterday evening I spent four hours looking for a counterexample, and finally figured that the statement was indeed true. I tried so hard to find a counterexample because I was not able to prove the statement at first. Are there any steps to follow in terms of this type of questions? In particular, sometimes a statement does not look like it is true. In this case, how can I quickly figure out whether I should try counterexamples or keep the efforts on proving the statement is true? The core problem is that this type of question is very time-consuming according to my homework experience. I desperately doubt I could figure out a correct answer during a timed exam next week.

Best Answer

I disagree with the approach of proving by contradiction as a start.

In most cases, and which ones are the exception simply requires experience, you should just start by trying to prove the statement as if it were true. There's no point in starting with a proof by contradiction. Just try to prove it.1

If you are careful, and again experience is needed here, then your derivation will either be successful, or you will get stuck.

Now ask yourself. Why did you get stuck? Maybe you need to assume that $x+1=y$, or maybe you need to assume that the function is continuous at $0$. Who knows? It depends on the problem and on your attempt to prove it. The next step, then, is to try and engineer a counterexample using the failure of this assumption. If you need to assume $x+1=y$ in order for it to work, take an example where $x=0$ and $y=3$. And so on. If that works, well done, you found a counterexample, and you even got a free bonus information: you found a condition that will let you complete the proof.

Of course, it might be that your attempt at a proof was bad. Maybe you tried to do something wrong. Who knows. But if your attempted counterexample failed, that gives you new information, it tells you that the information you thought was crucial for the proof is in fact not crucial for the proof.

So you have to start over again, and try a different method and a different approach. And repeat this until the result is satisfactory.

Unfortunately, it will not be the case that this will always work. Sometimes you are missing a crucial piece of knowledge that would simplify the work. Or sometimes you just made a series of mistakes in your proof, and you thought you proved it, whereas you haven't actually proved the right statement. This is why it is a good idea to work with a friend, where you can check each other and discuss these kind of things.

One last thing, which might be worth discussing, is how to approach a proof to begin with. Well, if you want to prove that things fall down to the earth, you start by letting a few things fall down and see how that works out. Similarly in mathematics, experimenting is not a bad idea. If you need to prove some equation holds, try plugging in some small numbers, $0$ and $1$ are perhaps $\sqrt2$, if the equation makes it convenient. If you have to prove something about functions, try a constant function, or $e^x$, or whatever.

Toy examples are very important towards understanding why something is true, and if you get some general idea as to why something might be true, it will also give you an idea as to how it should be proved.


  1. Of course, if the natural angle of attack is by contradiction, there's no point in not doing that either.