[Math] How prove this $\int_{a}^{b}f^2(x)dx\le (b-a)^2\int_{a}^{b}[f'(x)]^2dx$

integral-inequality

let $f\in C^{(1)}[a,b]$,and such that $f(a)=f(b)=0$, show that

$$\int_{a}^{b}f^2(x)dx\le (b-a)^2\int_{a}^{b}[f'(x)]^2dx\cdots\cdots (1)$$

My try: use Cauchy-Schwarz inequality

we have

$$\int_{a}^{b}[f'(x)]^2dx\int_{a}^{b}x^2dx\ge \left(\int_{a}^{b}xf'(x)dx\right)^2$$
$$\Longrightarrow \int_{a}^{b}[f'(x)]^2dx\ge\dfrac{3\left(\displaystyle\int_{a}^{b}xdf(x)\right)^2}{(b^3-a^3)}=\dfrac{3\left(\displaystyle\int_{a}^{b}f(x)dx\right)^2}{b^3-a^3}$$
so we only show that following
$$\dfrac{3\left(\displaystyle\int_{a}^{b}f(x)dx\right)^2}{b^3-a^3}\ge\dfrac{\displaystyle\int_{a}^{b}f^2(x)dx}{(b-a)^2}$$
maybe this is not true. so How prove it by (1)

Thank you

Best Answer

We have $$\int_a^bf^2(x)dx=\int_a^b\left(\int_a^x f'(y)dy\right)^2dx$$ and by Cauchy-Schwarz $$\left(\int_a^x f'(y)dy\right)^2\leq \int_a^x[f'(y)]^2dy\int_a^x1dy=(x-a)\int_a^x[f'(y)]^2dy$$ thus we get $$\begin{align} \int_a^bf^2(x)dx &\leq \int_a^b(x-a)\int_a^x [f'(y)]^2dydx\\ &\leq \int_a^b(b-a)\int_a^b [f'(y)]^2dydx=(b-a)^2\int_a^b [f'(y)]^2dy \end{align}$$ as desired.

Related Question