[Math] Homotopy equivalence from torus minus a point to a figure-eight.

algebraic-topology

Let $I$ be the unit interval, and define the torus using the usual identifications on $I \times I$. I've shown that $I \times I – \{x\}$ (where $x$ is a point not on the boundary of $I \times I$) is homotopy equivalent to its boundary (and that it even retracts onto its boundary). Let $p: I \times I \rightarrow I \times I /\sim$ be the canonical quotient map. Using the retraction above, call it $r$, is there a way I can explicitly show that $p(I \times I – \{x\})$ is homotopy equivalent to $p(\text{boundary of } I \times I)$, i.e., that torus minus a point to a figure-eight?

More generally, if $A \subset X$, and $X$ is homotopy equivalent to $A$ (or $X$ retracts to $A$), for which maps $p$ can I say that $p[X]$ is homotopy equivalent to $p[A]$?

Hints appreciated!

Best Answer

Let $r\colon I\times I\setminus\{p\}\to \partial (I\times I)$ be the retraction you mentioned. Can you show that there exists a retraction $\tilde{r}\colon (I\times I\setminus\{p\})/{\sim}\to \partial (I\times I)/{\sim}$ which make the following square commute?

$$\newcommand{\ra}[1]{\kern-1.5ex\xrightarrow{\ \ #1\ \ }\phantom{}\kern-1.5ex} \newcommand{\ras}[1]{\kern-1.5ex\xrightarrow{\ \ \smash{#1}\ \ }\phantom{}\kern-1.5ex} \newcommand{\da}[1]{\bigg\downarrow\raise.5ex\rlap{\scriptstyle#1}} \begin{array}{c} I\times I\setminus\{p\} & \ra{r} & \partial (I\times I) \\ \da{q} & & \da{q|_{\partial(I\times I)}} \\ (I\times I\setminus\{p\})/{\sim} & \ras{\tilde{r}} & \partial (I\times I)/{\sim} \\ \end{array} $$