Matrices – Hadamard Product Matrix Norm Inequality

matrices

Let $A \odot B$ denote the Hadamard or entry-wise product of two matrices with equivalent dimensions. In this post ( Hadamard product: Optimal bound on operator norm ) it is claimed without proof that if $A$ is positive-definite, then $$\|A \odot B\|_2 \leq \max_{i, j}|A_{i,j}| \|B\|_2$$ where $\| \cdot \|_2$ is the matrix operator norm induced from the Euclidean norm. Does anyone know how to prove this or have a reference? To me it does not seem so simple.

Best Answer

See (3.7.9) of Charles R. Johnson, Matrix Theory and Applications, American Mathematical Society, 1990, p.113. Essentially, for any two square matrices $A$ and $B$, if $A=X^\ast Y$ for some (probably rectangular) matrices $X$ and $Y$, then $$ \pmatrix{\|B\|_2(I\circ X^\ast X)&A\circ B\\ (A\circ B)^\ast&\|B\|_2(I\circ Y^\ast Y)} =\pmatrix{X^\ast X&A\\ A^\ast&Y^\ast Y}\circ\pmatrix{\|B\|_2I&B\\ B^\ast&\|B\|_2I} $$ is positive semidefinite, by Schur product theorem. Consequently, $$ A\circ B=\|B\|_2(I\circ X^\ast X)^{1/2}\,C\,(I\circ Y^\ast Y)^{1/2} $$ for some matrix $C$ with $\|C\|_2\le1$ and in turn, $$ \|A\circ B\|_2\le\sqrt{\|I\circ(X^\ast X)\|_2\|I\circ(Y^\ast Y)\|_2}\,\|B\|_2. $$ In your case, as $A$ is positive definite, if you put $X=Y=A^{1/2}$, you will obtain $$ \|A\circ B\|_2\le\|I\circ A\|_2\|B\|_2=\max_ia_{ii}\|B\|_2=\max_{i,j}|a_{ij}|\|B\|_2. $$

Related Question