[Math] Greatest Common Divisor of two Polynomials.

abstract-algebragcd-and-lcmpolynomials

Find the $\gcd(x^3-6x^2+14x-15, x^3-8x^2+21x-18)$ over $\mathbb{Q}[x]$. Then find two polynomials $a(x),b(x) \in \mathbb{Q}[x]$ such that, $$a(x)(x^3-6x^2+14x-15) + b(x)(x^3-8x^2+21x-18)=\gcd(x^3-6x^2+14x-15, x^3-8x^2+21x-18)$$

I have managed to find,
$$x^3-6x^2+14x-15=(x-3)(x^2-3x+5)$$
$$x^3-8x^2+21x-18=(x-3)(x-3)(x-2)$$

Now since $x^2-3x+5$ is irreducible over $\mathbb{Q}[x]$ and so the greatest common divisor is $(x-3)$. Now to find $a(x)$ and $b(x)$ I have no clue how to do that. I have looked online and it seems there is extended euclidean algorithm for polynomials but I haven't formally learned it in my class yet, so I was wondering if there is another efficient way to find these polynomials. Any help is appreciated, thanks!

Best Answer

This is just the Extended Euclidean Algorithm. Instead of back-substitution, I have always preferred to write the construction steps in the style of continued fractions. Furthermore, I have always depended on the kindness of strangers.

$$ \left( x^{3} - 6 x^{2} + 14 x - 15 \right) $$

$$ \left( x^{3} - 8 x^{2} + 21 x - 18 \right) $$

$$ \left( x^{3} - 6 x^{2} + 14 x - 15 \right) = \left( x^{3} - 8 x^{2} + 21 x - 18 \right) \cdot \color{magenta}{ \left( 1 \right) } + \left( 2 x^{2} - 7 x + 3 \right) $$ $$ \left( x^{3} - 8 x^{2} + 21 x - 18 \right) = \left( 2 x^{2} - 7 x + 3 \right) \cdot \color{magenta}{ \left( \frac{ 2 x - 9 }{ 4 } \right) } + \left( \frac{ 15 x - 45 }{ 4 } \right) $$ $$ \left( 2 x^{2} - 7 x + 3 \right) = \left( \frac{ 15 x - 45 }{ 4 } \right) \cdot \color{magenta}{ \left( \frac{ 8 x - 4 }{ 15 } \right) } + \left( 0 \right) $$ $$ \frac{ 0}{1} $$ $$ \frac{ 1}{0} $$ $$ \color{magenta}{ \left( 1 \right) } \Longrightarrow \Longrightarrow \frac{ \left( 1 \right) }{ \left( 1 \right) } $$ $$ \color{magenta}{ \left( \frac{ 2 x - 9 }{ 4 } \right) } \Longrightarrow \Longrightarrow \frac{ \left( \frac{ 2 x - 5 }{ 4 } \right) }{ \left( \frac{ 2 x - 9 }{ 4 } \right) } $$ $$ \color{magenta}{ \left( \frac{ 8 x - 4 }{ 15 } \right) } \Longrightarrow \Longrightarrow \frac{ \left( \frac{ 4 x^{2} - 12 x + 20 }{ 15 } \right) }{ \left( \frac{ 4 x^{2} - 20 x + 24 }{ 15 } \right) } $$ $$ \left( x^{2} - 3 x + 5 \right) \left( \frac{ 2 x - 9 }{ 15 } \right) - \left( x^{2} - 5 x + 6 \right) \left( \frac{ 2 x - 5 }{ 15 } \right) = \left( -1 \right) $$ $$ \left( x^{3} - 6 x^{2} + 14 x - 15 \right) = \left( x^{2} - 3 x + 5 \right) \cdot \color{magenta}{ \left( x - 3 \right) } + \left( 0 \right) $$ $$ \left( x^{3} - 8 x^{2} + 21 x - 18 \right) = \left( x^{2} - 5 x + 6 \right) \cdot \color{magenta}{ \left( x - 3 \right) } + \left( 0 \right) $$ $$ \mbox{GCD} = \color{magenta}{ \left( x - 3 \right) } $$ $$ \left( x^{3} - 6 x^{2} + 14 x - 15 \right) \left( \frac{ 2 x - 9 }{ 15 } \right) - \left( x^{3} - 8 x^{2} + 21 x - 18 \right) \left( \frac{ 2 x - 5 }{ 15 } \right) = \left( - x + 3 \right) $$

............

Related Question