Combinatorics – Generating Function of Integer Partitions into Distinct Parts

combinatoricsgenerating-functionsinteger-partitions

Let $p_d (n)$ denote the number of integer partitions of $n$ into all distinct parts. I am given the following equation, but I can't figure out why it holds:
$$\sum_{n \ge 0} p_d(n)x^n = \prod_{i \ge 1}(1+x^i).$$

P.S. This example is from Miklos Bona's A Walk Through Combinatorics (2nd edition).

Best Answer

Consider first the finite product

$$\prod_{i = 1}^n (1+x^i).$$

If you expand it, you get

$$\prod_{i = 1}^n (1+x^i) = \sum_{\varepsilon \in \{0,\,1\}^n} x^{\sum_{i=1}^n \varepsilon_i \cdot i}.$$

The term $x^k$ occurs as many times in that sum, as there are ways to write $k$ as a sum of distinct positive integers $\leqslant n$.

For $k \leqslant n$, the coefficient doesn't change anymore when you multiply further factors $(1+x^i),\, i > n$.

Perhaps expanding the product in full for $n = 4$ helps a little:

$$\begin{align} (1+&x)(1+x^2)(1+x^3)(1+x^4)\\ &= 1\cdot 1\cdot 1 \cdot 1 + 1\cdot 1\cdot 1\cdot x^4 + 1\cdot 1 \cdot x^3 \cdot 1 + 1\cdot 1 \cdot x^3 \cdot x^4\\ &\;+ 1\cdot x^2 \cdot 1\cdot 1 + 1\cdot x^2\cdot 1\cdot x^4 + 1\cdot x^2 \cdot x^3 \cdot 1 + 1\cdot x^2 \cdot x^3 \cdot x^4\\ &\;+ x^1\cdot 1\cdot 1 \cdot 1 + x^1\cdot 1\cdot 1\cdot x^4 + x^1\cdot 1 \cdot x^3 \cdot 1 + x^1\cdot 1 \cdot x^3 \cdot x^4\\ &\;+ x^1\cdot x^2 \cdot 1\cdot 1 + x^1\cdot x^2\cdot 1\cdot x^4 + x^1\cdot x^2 \cdot x^3 \cdot 1 + x^1\cdot x^2 \cdot x^3 \cdot x^4\\ &= 1 + x^4 + x^3 + x^7\\ &\; + x^2 + x^6 + x^5 + x^9\\ &\;+ x^1 + x^5 + x^4 + x^8\\ &\;+ x^3 + x^7 + x^6 + x^{10}\\ &= 1\cdot x^0 + 1\cdot x^1 + 1\cdot x^2 + 2\cdot x^3 + 2\cdot x^4 + 2\cdot x^5 + 2\cdot x^6 + 2\cdot x^7 + 1\cdot x^8 + 1\cdot x^9 + 1\cdot x^{10}. \end{align}$$

From each factor, we can choose either the $1 (= x^0)$ or the $x^i$ term. That gives $2^n$ products in total. Then we group these products by the resulting exponent of $x$.

Each of the $2^n$ products corresponds to one partition of an exponent into a sum of distinct positive integers, and each partition of $k$ into a sum of distinct positive integers $\leqslant n$ corresponds to one choice of the $x^0$ or the $x^i$ term of each factor.

Related Question