Generalised Integral – Evaluating I_n with Contour Integration

calculuscontour-integrationdefinite integralsintegration

I have this integral, $$I_n=\displaystyle \int_0^{\pi/2} \frac{x^n}{\sin ^n x} \ \mathrm{d}x, \qquad n\in \mathbb{Z}^+.$$
We have the results
$$
\begin{align}
I_1 & = 2C, \\
I_2 &= \pi\log 2, \\
I_4 & = -\frac{\pi^3}{12} + 2\pi\log 2 + \frac{\pi^3}{3}\log 2-\frac{3\pi}{2}\zeta(3),
\end{align}
$$
where $C$ is Catalan's constant. Can we prove any of these results, or make any progress on $I_3$, or the general case?

Best Answer

Integrating by parts 3 times,

$$ \begin{align} \int_{0}^{\pi /2} \frac{x^{4}}{\sin^{4} x} \ dx &= - \frac{x^{4}}{3} \cot(x) \left(\csc^{2} (x) +2 \right) \Bigg|^{\pi/2}_{0} + \frac{4}{3} \int_{0}^{\pi /2} x^{3} \cot (x) \left(\csc^{2} (x) +2 \right) \ dx \\ &= \frac{4}{3} \int_{0}^{\pi /2} x^{3} \cot (x) \left(\csc^{2} (x) +2 \right) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx + \frac{4}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \csc^{2}(x) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx - \frac{2}{3}x^{3} \cot^{2}(x) \Bigg|^{\pi/2}_{0} + 2 \int_{0}^{\pi /2} x^{2} \cot^{2}(x) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx + 2 \int_{0}^{\pi /2} x^{2} \cot^{2} (x) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx -2x^{2} \Big( x + \cot(x) \Big) \Bigg|^{\pi/2}_{0} +4 \int_{0}^{\pi /2} x\Big(x+ \cot(x) \Big) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx - \frac{\pi^{3}}{4} + 4 \int_{0}^{\pi /2} x^{2} \ dx + 4 \int_{0}^{\pi /2} x \cot(x) \ dx \\ &= \frac{8}{3} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx - \frac{\pi^{3}}{12} + 4 \int_{0}^{\pi /2} x \cot(x) \ dx . \end{align}$$

In general, $$ \int_{a}^{b} f(x) \cot(x) \ dx = 2 \sum_{n=1}^{\infty} \int_{a}^{b} f(x) \sin (2nx) \ dx .$$

See here.

So $$ \begin{align} \int_{0}^{\pi /2} x^{3} \cot(x) \ dx &= 2 \sum_{n=1}^{\infty} \int_{0}^{\pi /2} x^{3} \sin (2nx) \ dx \\ &= 2 \sum_{n=1}^{\infty} \left(\frac{(-1)^{n-1} \pi^{3}}{16n} - \frac{(-1)^{n-1} 3\pi}{8n^{3}} \right) \\ &= \frac{\pi^{3}}{8} \ln (2) - \frac{3 \pi}{4} \eta(3) \\ &= \frac{\pi^{3}}{8} \ln (2) - \frac{9 \pi }{16} \zeta(3). \end{align}$$

And

$$ \begin{align} \int^{\pi /2}_{0} x \cot(x) \ dx &= 2 \sum_{n=1}^{\infty} \int_{0}^{\pi /2} x \sin(2nx) \ dx \\ &= -\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \\ &= \frac{\pi \ln 2}{2} . \end{align}$$

Therefore,

$$ \begin{align} \int_{0}^{\pi /2} \frac{x^{4}}{\sin^{4} x} \ dx &= \frac{8}{3} \left( \frac{\pi^{3}}{8} \ln (2) - \frac{9 \pi }{16} \zeta(3) \right) - \frac{\pi^{3}}{12} + 4 \left(\frac{\pi \ln 2}{2} \right) \\ &= - \frac{\pi^{3}}{12} + 2 \pi \ln(2) + \frac{\pi^{3}}{3} \ln (2) - \frac{3 \pi}{2} \zeta(3) . \end{align}$$

Related Question